Article

Allosteric modulation of dopamine D-2 receptors by homocysteine

Department of Biochemistry and Molecular Biology (Facultad de Biología), University of Barcelona, Barcino, Catalonia, Spain
Journal of Proteome Research (Impact Factor: 5). 12/2006; 5(11):3077-83. DOI: 10.1021/pr0601382
Source: PubMed

ABSTRACT It has been suggested that L-DOPA-induced hyperhomocysteinemia can increase the risk of stroke, heart disease, and dementia and is an additional pathogenetic factor involved in the progression of Parkinson's disease. In Chinese hamster ovary (CHO) cells stably cotransfected with adenosine A(2A) and dopamine D2 receptors, homocysteine selectively decreased the ability of D2 receptor stimulation to internalize adenosine A(2A)-dopamine D2 receptor complexes. Radioligand-binding experiments in the same cell line demonstrated that homocysteine acts as an allosteric D2 receptor antagonist, by selectively reducing the affinity of D2 receptors for agonists but not for antagonists. Mass spectrometric analysis showed that, by means of an arginine (Arg)-thiol electrostatic interaction, homocysteine forms noncovalent complexes with the two Arg-rich epitopes of the third intracellular loop of the D2 receptor, one of them involved in A(2A)-D2 receptor heteromerization. However, homocysteine was unable to prevent or disrupt A(2A)-D2 receptor heteromerization, as demonstrated with Fluorescence Resonance Energy Transfer (FRET) experiments in stably cotransfected HEK cells. The present results could have implications for Parkinson's disease.

Download full-text

Full-text

Available from: Diego Guidolin, Aug 29, 2015
0 Followers
 · 
274 Views
  • Source
    • "Another possible mechanism of the role of Hcy in dopaminergic transmission has been presented by Agnati et al. [55], and allosteric modulation of dopamine D2 receptors showed that Hcy acted as an allosteric D2 receptor antagonist in an animal model, selectively reducing the affinity of D2 receptors for agonists but not for antagonists. The molecular mechanism of this modulation showed that Hcy forms non-covalent complexes with two arginine (Arg)-rich epitopes of the third intracellular loop of the D2 receptor [55]. These implications may result in the complications seen in PD therapy, such as the effect of high levels of Hcy on the reactivity of patients to L-dopa and dopamine agonists commonly used in the treatment of PD. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer's disease (AD) and Parkinson's disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.
    Current Genomics 12/2013; 14(8):534-42. DOI:10.2174/1389202914666131210210559 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural plasticity of G-protein coupled receptors (GPCRs) is of basic importance for their interactions with ligands, in particular with other proteins such as receptors or receptor-modifying proteins that can lead to different functions for the same GPCR. In the present paper, structural plasticity of GPCRs has been investigated discussing allosteric modulatory actions of Homocysteine (Hcy) on D2 receptors together with data obtained by computer-assisted analysis of the presence of disordered domains in GPCRs. Previous evidence for a modulatory action of Hcy on D2 receptors has been further extended by means of experiments on the effects of Hcy local intrastriatal injection on rotational behaviour. Altogether the present data allow considering under a new angle the well known proposal of A2A antagonists as new therapeutic agents in Parkinson's disease (PD). Furthermore, they point out to not only the importance of drugs capable of reducing Hcy brain levels, but also to the potential therapeutic impact of drugs capable of regionally blocking (for PD) or enhancing (for some schizophrenic syndromes) Hcy allosteric action on D2 receptors. As far as the investigations on GPCR plastic domains, extracellular, intracellular and transmembrane domains of 14 GPCRs have been considered and propensity of each of these domains for a structured or unstructured conformation has been evaluated by means of ad hoc computer programs. It has been shown that the N- and C-terminals as well as intracellular loop 3 have a high propensity towards an unstructured conformation, hence they are potentially very plastic domains, which can undergo easily to interactions with other ligands, particularly with other protein domains. This aspect is obviously of the greatest importance not only for the function of single GPCRs, but also for their interactions either with other receptors (receptor-receptor interactions) or, more generally, for formation of clusters of membrane associated proteins, hence of "protein mosaics", where the GPCRs could represent the input unit of the supra-molecular device.
    Brain Research Reviews 11/2007; 58(2):459-74. DOI:10.1016/j.brainresrev.2007.10.003 · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological systems are organized in intricate and highly structured networks with hierarchies and multiple scales. Cells can be considered as "meso-scale level" systems placed between the "macro-scale level" (systems of cellular networks) and the "micro-scale level" (systems of molecular networks). In fact, cells represent complex biochemical machineries made by networks of molecules connected by biochemical reactions. Thus, the brain should be studied as a system of "networks of networks". Recently, the existence of a Global Molecular Network (GMN) enmeshing the entire CNS was proposed. This proposal is based on the evidence that the extra-cellular matrix is a dynamic molecular structure capable of storing and releasing signals and of interacting with receptors and proteins on the cell membranes. Proteins have a special role in molecular networks since they can be assembled into high-order molecular complexes, which have been defined as Protein Mosaics (PM). Protein monomers in a PM (the "tesserae" of the mosaic) can interact via classical and non-classical cooperativity behaviour involving allosteric interactions. In the present paper, new features of allostery and cooperativity for protein folding, assemblage and topological features of PM will be discussed. Against this background, alterations in PM via allosteric modulations and non-classical cooperativity mechanisms may lead to protein aggregates like beta amyloid fibrils. Such aggregates cause pathological changes in the GMN structure and function leading to neurodegenerative diseases such as Alzheimer's disease. Thus, a novel view of the so called Protein Conformational Diseases (PCD) is proposed.
    Current Protein and Peptide Science 11/2007; 8(5):460-70. DOI:10.2174/138920307782411419 · 2.33 Impact Factor
Show more