Article

Unexplained acidosis of malnutrition: a study by ion-exchange chromatography/mass spectrometry

University of London, Londinium, England, United Kingdom
Biomedical Chromatography (Impact Factor: 1.66). 12/2006; 20(12):1386-9. DOI: 10.1002/bmc.712
Source: PubMed

ABSTRACT Keto-acidosis is usually associated with uncontrolled diabetes and typically poses few diagnostic problems when presenting as hyperglycaemia, metabolic acidosis and a high anion gap. An emaciated patient suffering from Duchenne Muscular Dystrophy and volume depletion presented with acidosis of unknown origin. Preliminary investigations appeared to rule out lactic acidosis, diabetic keto-acidosis and acidosis due to base loss. We have previously reported a technique utilizing liquid chromatography coupled to mass spectrometry (LC-MS) which can be used to characterize the underlying aetiology of acidosis and applied it to ultrafiltrate derived from a blood sample taken from this patient. The anion profile obtained on the chromatogram showed elevated levels of acetoacetate and hydroxybutyrate but no evidence of lactic acidosis, nor was the profile typical of that seen in 'unexplained' acidosis. We concluded that the patient was suffering from keto-acidosis associated with starvation and dehydration, the biochemical features being obscured by both the patient's chronic malnutrition and minimal muscle mass. A combination of enteral feeding and rehydration led to prompt resolution of the patient's metabolic acidosis.

0 Followers
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: RATIONALEMass spectrometry (MS) is an attractive method for extending capillary-size ion chromatography (cHPIC) to create a valuable technique for speciation analysis. For hyphenation, the aqueous effluent of cHPIC has to be transformed into a volatile mixture for MS while preserving analytical concentrations as well as peak shapes during transfer from cHPIC to MS. Finally, the approach should technically be flexible and easy-to-use. A combination of cHPIC and sheath-flow electrospray ionization (ESI)-MS offers to solve all these challenges.METHOD ScHPIC/sheath-flow-ESI-TOFMS was used in this study for the speciation analysis of various arsenic model compounds. These model compounds were analyzed with different hyphenation setups and configurations of cHPIC/MS and their respective assets and drawbacks were examined and discussed. The parameters (flow rate and composition of sheath liquid) of sheath-flow ESI and their influence on the performance of the spray and the sensitivity of the detector were investigated and compared with those of sheathless ESI.RESULTSUsing an injection valve to couple cHPIC and MS was found to be the best method for hyphenation, since it constitutes a flexible and dead-volume-free approach. The investigation of sheath-flow ESI revealed that the flow rate of the sheath liquid has to resemble the flow rate of the IC effluent to ensure a stable spray and that a composition of 2-propanol/water/ammonia at 50:50:0.2 (v/v/v) suits most applications without unilaterally promoting the sensitivity for either organic or inorganic compounds. The optimized setup and conditions were successfully applied to the analysis of a mixture of important arsenic species and used to determine limits of detection of organic and inorganic arsenic species (3.7 µg L−1 elemental arsenic).CONCLUSIONSA method for cHPIC/sheath-flow-ESI-MS was developed. The method was shown to be a valuable tool for speciation and trace analysis. It features no dead volume, fast transfer from IC to MS, only minimal peak-widening, high reproducibility, and the ability to fine-tune the ESI spray for higher sensitivity and stability by adjusting the composition of the sheath-liquid. Copyright © 2014 John Wiley & Sons, Ltd.
    Rapid Communications in Mass Spectrometry 12/2014; 28(23). DOI:10.1002/rcm.7056 · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acidosis is an important cause of mortality in severe falciparum malaria. Lactic acid is a major contributor to metabolic acidosis, but accounts for only one-quarter of the strong anion gap. Other unidentified organic acids have an independent strong prognostic significance for a fatal outcome. In this study, a simultaneous bio-analytical method for qualitative and quantitative assessment in plasma and urine of eight small organic acids potentially contributing to acidosis in severe malaria was developed and validated. High-throughput strong anion exchange solid-phase extraction in a 96-well plate format was used for sample preparation. Hydrophilic interaction liquid chromatography (HILIC) coupled to negative mass spectroscopy was utilized for separation and detection. Eight possible small organic acids; l-lactic acid (LA), α-hydroxybutyric acid (aHBA), β-hydroxybutyric acid (bHBA), p-hydroxyphenyllactic acid (pHPLA), malonic acid (MA), methylmalonic acid (MMA), ethylmalonic acid (EMA) and α-ketoglutaric acid (aKGA) were analyzed simultaneously using a ZIC-HILIC column with an isocratic elution containing acetonitrile and ammonium acetate buffer. This method was validated according to U.S. Food and Drug Administration guidelines with additional validation procedures for endogenous substances. Accuracy for all eight acids ranged from 93.1% to 104.0%, and the within-day and between-day precisions (i.e. relative standard deviations) were lower than 5.5% at all tested concentrations. The calibration ranges were: 2.5-2500μg/mL for LA, 0.125-125μg/mL for aHBA, 7.5-375μg/mL for bHBA, 0.1-100μg/mL for pHPLA, 1-1000μg/mL for MA, 0.25-250μg/mL for MMA, 0.25-100μg/mL for EMA, and 30-1500μg/mL for aKGA. Clinical applicability was demonstrated by analyzing plasma and urine samples from five patients with severe falciparum malaria; five acids had increased concentrations in plasma (range LA=177-1169μg/mL, aHBA=4.70-38.4μg/mL, bHBA=7.70-38.0μg/mL, pHPLA=0.900-4.30μg/mL and aKGA=30.2-32.0) and seven in urine samples (range LA=11.2-513μg/mL, aHBA=1.50-69.5μg/mL, bHBA=8.10-111μg/mL, pHPLA=4.30-27.7μg/mL, MMA=0.300-13.3μg/mL, EMA=0.300-48.1μg/mL and aKGA=30.4-107μg/mL). In conclusion, a novel bioanalytical method was developed and validated which allows for simultaneous quantification of eight small organic acids in plasma and urine. This new method may be a useful tool for the assessment of acidosis in patients with severe malaria, and other conditions complicated by acidosis.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 10/2013; 941C:116-122. DOI:10.1016/j.jchromb.2013.10.005 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as "accelerated starvation." Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA). We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids.
    01/2014; 2014:906283. DOI:10.1155/2014/906283