Transgelin Functions as a Suppressor via Inhibition of ARA54-Enhanced Androgen Receptor Transactivation and Prostate Cancer Cell Growth

George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, New York 14642, USA.
Molecular Endocrinology (Impact Factor: 4.02). 03/2007; 21(2):343-58. DOI: 10.1210/me.2006-0104
Source: PubMed


The androgen receptor (AR) requires coregulators for its optimal function. However, whether AR coregulators further need interacting protein(s) for their proper function remains unclear. Here we describe transgelin as the first ARA54-associated negative modulator for AR. Transgelin suppressed ARA54-enhanced AR function in ARA54-positive, but not in ARA54-negative, cells. Transgelin suppressed AR transactivation via interruption of ARA54 homodimerization and AR-ARA54 heterodimerization, resulting in the cytoplasmic retention of AR and ARA54. Stable transfection of transgelin in LNCaP cells suppressed AR-mediated cell growth and prostate-specific antigen expression, whereas this suppressive effect was abolished by the addition of ARA54-small interfering RNA. Results from tissue surveys showing decreased expression of transgelin in prostate cancer specimens further strengthened the suppressor role of transgelin. Our findings reveal the novel mechanisms of how transgelin functions as a suppressor to inhibit prostate cancer cell growth. They also demonstrate that AR coregulators, like ARA54, might have dual in vivo roles functioning as both a direct coactivator and as an indirect mediator in AR function. The finding that a protein can modulate AR function without direct interaction with AR might provide a new therapeutic approach, with fewer side effects, to battle prostate cancer by targeting AR indirectly.

Download full-text


Available from: Yu-Jia Chang, May 12, 2014
  • Source
    • "Transgelin 2 was also proved to have relationship with hepatitis B and liver carcinoma. The oncogene Ras inhibits the expression of transgelin 2 genes in thoracic wall and large bowel neoplasm and some other cancers [12–16]. The inhibition effect on tumor cell proliferation of calycosin might be caused by upregulated transgelin 2 protein expression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G 1 phase ( P < 0.01 ) on the IC 50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins’ expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle.
    12/2013; 2013(5):317926. DOI:10.1155/2013/317926
  • Source
    • "Some of these proteins have been implicated in various aspects of tumorigenesis and these are hereby discussed. The CapG protein is important in the maintenance of cellular structure and morphology [48]–[55]. The overexpression of CapG in PC3-ML2 compared to PC3-N2 in this study would suggest that CapG can promote invasion and metastasis in prostate cancer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is a clinically heterogeneous disease, ranging from indolent asymptomatic disease to very aggressive metastatic and life threatening forms of the disease. Distant metastasis represents the major lethal cause of prostate cancer. The most critical clinical challenge in the management of the patients is identifying those individuals at risk of developing metastatic disease. To understand the molecular mechanisms of prostate cancer metastasis and identify markers with metastatic potential, we have analyzed protein expression in two syngeneic prostate cancer cells lines PC3-N2 and PC3-ML2 using isobaric tags for relative and absolute quantitation labeling and multi-dimensional protein identification technology liquid chromatography matrix assisted laser desorption ionization tandem mass spectrometry. PC3-N2 is lowly metastatic while PC3-ML2 highly metastatic. A total of 1,756 proteins were identified in the analyses with 130 proteins showing different expression levels (p<0.01) in the two cell lines. Out of these, 68 proteins were found to be significantly up-regulated while 62 are significantly down-regulated in PC3-ML2 cells compared with PC3-N2 cells. The upregulation of plectin and vimentin which were the most significantly differentially expressed were validated by Western blot and their functional relevance with respect to invasion and migration was determined by siRNA gene silencing. To our knowledge, this study is the first to demonstrate that up-regulation of vimentin and plectin expression positively correlates with the invasion and metastasis of androgen-independent PCA.
    PLoS ONE 05/2013; 8(5):e65005. DOI:10.1371/journal.pone.0065005 · 3.23 Impact Factor
  • Source
    • "Cluster II included genes underexpressed in CC cells. These were mainly tumor suppressor genes such as GREM1, THY1, STC2, SERPINE1, SPARC and TAGLN [28-33]. Cluster III was genes upregulated in NBE cells, and contained the PDGFRA, CD248, and BDKRB1 genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of CC (cholangiocarcinoma) oncogenesis and progression are poorly understood. This study aimed to determine the genome-wide expression of genes related to CC oncogenesis and sarcomatous transdifferentiation. Genes that were differentially expressed between CC cell lines or tissues and cultured normal biliary epithelial (NBE) cells were identified using DNA microarray technology. Expressions were validated in human CC tissues and cells. Using unsupervised hierarchical clustering analysis of the cell line and tissue samples, we identified a set of 342 commonly regulated (>2-fold change) genes. Of these, 53, including tumor-related genes, were upregulated, and 289, including tumor suppressor genes, were downregulated (<0.5 fold change). Expression of SPP1, EFNB2, E2F2, IRX3, PTTG1, PPARγ, KRT17, UCHL1, IGFBP7 and SPARC proteins was immunohistochemically verified in human and hamster CC tissues. Additional unsupervised hierarchical clustering analysis of sarcomatoid CC cells compared to three adenocarcinomatous CC cell lines revealed 292 differentially upregulated genes (>4-fold change), and 267 differentially downregulated genes (<0.25 fold change). The expression of 12 proteins was validated in the CC cell lines by immunoblot analysis and immunohistochemical staining. Of the proteins analyzed, we found upregulation of the expression of the epithelial-mesenchymal transition (EMT)-related proteins VIM and TWIST1, and restoration of the methylation-silenced proteins LDHB, BNIP3, UCHL1, and NPTX2 during sarcomatoid transdifferentiation of CC. The deregulation of oncogenes, tumor suppressor genes, and methylation-related genes may be useful in identifying molecular targets for CC diagnosis and prognosis.
    BMC Cancer 02/2011; 11(1):78. DOI:10.1186/1471-2407-11-78 · 3.36 Impact Factor
Show more