The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly.

Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
Cell (Impact Factor: 33.12). 12/2006; 127(3):539-52. DOI: 10.1016/j.cell.2006.08.053
Source: PubMed

ABSTRACT The heterodimeric tumor-suppressor complex BRCA1/BARD1 exhibits E3 ubiquitin ligase activity and participates in cell proliferation and chromosome stability control by incompletely defined mechanisms. Here we show that, in both mammalian cells and Xenopus egg extracts, BRCA1/BARD1 is required for mitotic spindle-pole assembly and for accumulation of TPX2, a major spindle organizer and Ran target, on spindle poles. This function is centrosome independent, operates downstream of Ran GTPase, and depends upon BRCA1/BARD1 E3 ubiquitin ligase activity. Xenopus BRCA1/BARD1 forms endogenous complexes with three spindle-pole proteins, TPX2, NuMA, and XRHAMM--a known TPX2 partner--and specifically attenuates XRHAMM function. These observations reveal a previously unrecognized function of BRCA1/BARD1 in mitotic spindle assembly that likely contributes to its role in chromosome stability control and tumor suppression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility. © 2015. Published by The Company of Biologists Ltd.
    03/2015; 4(4). DOI:10.1242/bio.201410892
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human adipose-derived stem cells (hADSCs) may provide a suitable number of progenitors for the treatment of lymphatic edema; however, to date the protocols for inducing hADSCs into this tissue type have not been standardized. We wished to investigate the induction of hADSCs into lymphatic endothelial-like cells using vascular endothelial growth factor-C156S (VEGF-C156S) and other growth factors in vitro. hADSCs from healthy adult adipose tissue were purified using enzyme digestion. Differentiation was induced using medium containing VEGF-C156S and bovine fibroblast growth factor (bFGF). Differentiation was confirmed using immunostaining for lymphatic vessel endothelial hyaluronan receptor (LYVE-1) and fms-related tyrosine kinase 4 (FLT-4), two lymphatic endothelial cell markers. The expression levels of LYVE-1, prospero homeobox 1 (PROX-1), and FLT-4 throughout induction were assessed using reverse transcriptase quantitative polymerase chain reaction. hADSCs were successfully obtained by trypsin digest and purification. Flow cytometry showed these cells were similar to mesenchymal stem cells, with a high positive rate of CD13, CD29, CD44, and CD105, and a low positive rate of CD31, CD34, CD45, and HLA-DR. Induction to lymphatic endothelial-like cells was successful, with cells expressing high levels of LYVE-1, PROX-1, and FLT-4. Adipose-derived stem cells can be induced to differentiate into lymphatic endothelial-like cells using a medium containing VEGF-C156S, bFGF, and other growth factors. This population of lymphatic endothelial-like cells may be useful for lymphatic reconstruction in the future.
    Cellular Reprogramming 02/2015; 17(1):69-76. DOI:10.1089/cell.2014.0043 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity.
    Cell Death & Disease 12/2014; 5:e1580. DOI:10.1038/cddis.2014.537 · 5.18 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014