Article

Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy

Department of Nephrology, La Pitie-Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Pierre et Marie Curie-Paris IV, 75013 Paris, France.
The Journal of Infectious Diseases (Impact Factor: 5.78). 12/2006; 194(11):1481-91. DOI: 10.1086/508546
Source: PubMed

ABSTRACT Tenofovir disoproxil fumarate (TDF) may induce renal proximal tubulopathy (rPT). There are no data on pharmacogenomic predictors of rPT in the genes encoding the multidrug-resistance protein (MRP) 2 and MRP4 transporters.
Mutational screening of the genes for MRP2 (ABCC2) and MRP4 (ABCC4) was performed using genomic DNA from 13 human immunodeficiency virus type 1 (HIV-1)-infected patients (group 1) presenting with TDF-induced rPT. Concomitantly, 17 unrelated HIV-1-infected patients who had received TDF therapy and who did not have rPT (group 2) were included in a case-control analysis, to assess the influence of single-nucleotide polymorphisms (SNPs) identified in ABCC2 and ABCC4.
Six SNPs were identified in ABCC2. A significant allelic association between the 1249 G-->A SNP and TDF-induced rPT was observed (odds ratio, 6.11 [95% confidence interval, 1.19-31.15]; P<.02). ABCC2 haplotypes were significantly associated with the onset of TDF-induced rPT--CATC appeared to be a predisposing haplotype, as it was found in 40.9% of the group 1 case patients and in 13.7% of the group 2 control subjects (P<.01), whereas CGAC appeared to be a protective haplotype, as it was not observed in the group 1 case patients but was present in 20.2% of the group 2 control subjects (P<.01). No association was observed between ABCC4 polymorphism and TDF-induced rPT in the present study.
ABCC2 haplotypes are associated with rPT induced by TDF in HIV-1-infected patients.

0 Bookmarks
 · 
148 Views
  • Source
    AIDS 03/2015; 29(5):645-647. DOI:10.1097/QAD.0000000000000578 · 6.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of antiviral agents used against Human Immunodeficiency Virus (HIV) infection and hepatitis B virus (HBV) mono or co-infection have been associated with real nephrotoxicity (including tenofovir disoproxil fumarate (TDF), atazanavir, indinavir and lopinavir) or apparent changes in renal function (e.g. cobicistat, ritonavir, rilpivirine and dolutegravir). Patients with HIV are at higher risk of acute and chronic renal dysfunction, so baseline assessment and ongoing monitoring of renal function is an important part of routine management of patients with HIV. Given the paucity of evidence in this area, we sought to establish a consensus view on how routine monitoring could be performed in Australian patients on ART regimens, especially those involving TDF. A group of nephrologists and prescribers (an HIV physician and a hepatologist) were assembled by Gilead to discuss practical and reasonable renal management strategies for patients particularly those on TDF-based combination regimens (in the case of those with HIV-infection) or on TDF-monotherapy (in the case of HBV-mono infection). The group considered which investigations should be performed as part of routine practice, their frequency, and when specialist renal referral is warranted. The algorithm presented suggests testing for serum creatinine along with plasma phosphate and an assessment of urinary protein (rather than albumin) and glucose. Here we advocate baseline tests of renal function at initiation of therapy. If creatinine excretion inhibitors (e.g. cobicistat or rilpivirine) are used as part of the ART regimen, we suggest creatinine is rechecked at 4 weeks and this value used as the new baseline. Repeat testing is suggested at 3-monthly intervals for a year and then at least yearly thereafter if no abnormalities are detected. In patients with abnormal baseline results, renal function assessment should be performed at least 6 monthly. In HBV mono-infected patients advocate that a similar testing protocol may be logical.
    AIDS Research and Therapy 01/2014; 11:35. DOI:10.1186/1742-6405-11-35 · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.
    Pharmacogenomics 11/2014; 15(15):1903-30. DOI:10.2217/pgs.14.147 · 3.43 Impact Factor