Article

Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity.

Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
The Journal of Immunology (Impact Factor: 5.36). 12/2006; 177(10):6991-8. DOI: 10.4049/jimmunol.177.10.6991
Source: PubMed

ABSTRACT The chemokine IFN-gamma-inducible protein of 10 kDa (IP-10; CXCL10) plays an important role in the recruitment of activated T lymphocytes into sites of inflammation by interacting with the G protein-coupled receptor CXCR3. IP-10, like other chemokines, forms oligomers, the role of which has not yet been explored. In this study, we used a monomeric IP-10 mutant to elucidate the functional significance of oligomerization. Although monomeric IP-10 had reduced binding affinity for CXCR3 and heparin, it was able to induce in vitro chemotaxis of activated T cells with the same efficacy as wild-type IP-10. However, monomeric IP-10 was unable to induce recruitment of activated CD8+ T cells into the airways of mice after intratracheal instillation. Use of a different IP-10 mutant demonstrated that this inability was due to lack of oligomerization rather than reduced CXCR3 or heparin binding. Molecular imaging demonstrated that both wild-type and monomeric IP-10 were retained in the lung after intratracheal instillation. However, in vitro binding assays indicated that wild-type, but not monomeric, IP-10 was retained on endothelial cells and could induce transendothelial chemotaxis of activated T cells. We therefore propose that oligomerization of IP-10 is required for presentation on endothelial cells and subsequent transendothelial migration, an essential step for lymphocyte recruitment in vivo.

0 Bookmarks
 · 
147 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
    Pharmacological reviews 01/2014; 66(1):1-79. · 18.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines are small proteins best known for their role in controlling the migration of diverse cells, particularly leukocytes. Upon binding to their G-protein-coupled receptors on the leukocytes, chemokines stimulate the signaling events that cause cytoskeletal rearrangements involved in cell movement, and migration of the cells along chemokine gradients. Depending on the cell type, chemokines also induce many other types of cellular responses including those related to defense mechanisms, cell proliferation, survival, and development. Historically, most research efforts have focused on the interaction of chemokines with their receptors, where monomeric forms of the ligands are the functionally relevant state. More recently, however, the importance of chemokine interactions with cell surface glycosaminoglycans has come to light, and in most cases appears to involve oligomeric chemokine structures. This review summarizes existing knowledge relating to the structure and function of chemokine oligomers, and emerging methodology for determining structures of complex chemokine assemblies in the future.
    Progress in molecular biology and translational science 01/2013; 117:531-78. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structural analyses of protein-protein interactions are required to reveal their functional mechanisms, and accurate protein-protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein-protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s-1). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein-protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.
    Quarterly Reviews of Biophysics 02/2009; 54(2):123-140. · 11.88 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
Sep 26, 2014