Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotropin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet, Mugil cephalus.

Department of Primary Industries and Fisheries, Bribie Island Aquaculture Research Centre, 144 North Street, Woorim 4507, Qld, Australia.
General and Comparative Endocrinology (Impact Factor: 2.82). 02/2007; 150(2):278-87. DOI: 10.1016/j.ygcen.2006.09.008
Source: PubMed

ABSTRACT The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying the initiation of puberty in fish are poorly understood, and whether the Kiss1 receptor (Kiss1r; previously designated G protein-coupled receptor 54; GPR54) and its ligands, kisspeptins, play a significant role, as has been established in mammals, is not yet known. We determined (via real-time PCR) temporal patterns of expression in the brain of kiss1r, gnrh2, and gnrh3 and a suite of related genes in the hypothalamo-pituitary-gonadal (HPG) axis and analyzed them against the timing of gonadal germ cell development in male and female fathead minnow (Pimephales promelas). Full- or partial-length cDNAs for kiss1r (736 bp), gnrh2 (698 bp), and gnrh3 (804 bp) cloned from fathead minnow were found to be expressed only in the brain, testis, and ovary of adult fish. Localization of kiss1r, gnrh2, and gnrh3 within the brain provided evidence for their physiological roles and a likely hypophysiotropic role for GnRH3 in this species (which, like other cyprinids, does not appear to express gnrh1). In both sexes, kiss1r expression in the brain increased at the onset of puberty and reached maximal expression in males when spermatagonia type B appeared in the testis and in females when cortical alveolus-stage oocytes first appeared in the ovary, the timings of which differed for the two sexes. However, kiss1r expression was considerably lower during more advanced stages of spermatogenesis and oogenesis. The expression of kiss1r closely aligned with that of the gnrh genes (gnrh3 in particular), suggesting the Kiss1r/kisspeptin system in fish has a similar role in puberty to that occurring in mammals, and this hypothesis was supported by the induction of gnrh3 (2.25-fold) and kiss1r (1.5-fold) in early-mid pubertal fish injected with mammalian kisspeptin-10 (2 nmol/g wet weight). An intriguing finding, and contrasting that in mammals, was an elevated expression of esr1, ar, and cyp19a2 (genes involved in sex steroid signaling) in the brain at the onset of puberty, and in females slightly in advance of the elevation in the expression of kiss1r.
    Biology of Reproduction 03/2008; 78(2):278-89. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The KISS1 gene encodes the kisspeptin neuropeptide, which activates the KISS1 receptor (KISS1R; G protein-coupled receptor 54; GPR54) and participates in neuroendocrine regulation of GnRH secretion. To study the physiological function(s) and evolutionary conservation of KISS1, we cloned opossum, Xenopus, and zebrafish kiss1 cDNAs. Processing zebrafish, Xenopus, or opossum KISS proteins would liberate a carboxy-terminal amidated peptide with 52, 54, or 53 amino acid residues, respectively. Phylogenetic analysis of all known vertebrate KISS1 peptides showed clear clustering of the sequences according to canonical vertebrate classes. The zebrafish kiss1 gene consists of two exons and one intron. Real-time PCR analysis of two kiss1R cloned from zebrafish brain found expression of kiss1, kiss1ra, and kiss1rb, with kiss1ra-more similar to other piscine Kiss1 receptors-highly expressed in the gonads and kiss1rb in other nonbrain tissues. In females kiss1 mRNA levels gradually increased during the first few weeks of life to peak in fish with ovaries containing mature oocytes, while in males kiss1 mRNA levels peaked after 6 wk postfertilization when the testes exhibited initial stages of spermatogenesis and decreased after puberty. Zebrafish kiss1ra and kiss1rb were expressed differentially with similar patterns in both genders. These results indicate that the Kiss1/Kiss1r system may participate in puberty initiation in fish as well. Like human KISS1R, Kiss1ra transduces its activity via the PKC pathway, whereas Kiss1rb does so via both PKC and PKA pathways. The human KISS1R was highly activated by both huKISS10amide and zfKISS10amide, whereas both zebrafish Kiss1 receptor types were less sensitive to amidation.
    Biology of Reproduction 06/2008; 79(4):776-86. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, the Kiss1 receptor (Kiss1r) and its kisspeptin ligands are key factors regulating the onset of puberty. In fish, however, the mechanisms underlying the initiation of puberty are poorly understood and the role of the Kiss1r/kisspeptin pathway in this process has not been established. In this study, a bioinformatics approach was used to identify the genes for Kiss1 and Kiss1r in five teleost genomes and the information used to clone the corresponding transcripts from zebrafish. Zebrafish kiss1r was expressed predominantly in the brain, with a minor level of expression in the eye, and zebrafish kiss1 was expressed in brain, intestine, adipose tissue and testis. Analysis of the chromosome region containing the kiss1 locus showed high synteny across vertebrate genomes. In contrast to their mammalian homologues, teleost Kiss1 protein sequences were poorly conserved with the exception of the region representing kisspeptin-10. Signal peptide sequences and likely cleavage and amidation sites in the teleost Kiss1 sequences were determined and found to be similar to those in mammalian Kiss1. This is the first report of the existence and characterization of the Kiss1 gene outside the mammalian taxa, suggesting that a functional Kiss1/Kiss1 receptor pathway is conserved across vertebrate species.
    Peptides 02/2008; 29(1):57-64. · 2.52 Impact Factor