Article

Exo70 interacts with the Arp2/3 complex and regulates cell migration.

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Nature Cell Biology (Impact Factor: 20.06). 01/2007; 8(12):1383-8. DOI: 10.1038/ncb1505
Source: PubMed

ABSTRACT The exocyst is a multiprotein complex essential for tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. Here, we report that the exocyst component Exo70 interacts with the Arp2/3 complex, a key regulator of actin polymerization. We further show that the exocyst-Arp2/3 interaction is regulated by epidermal growth factor (EGF) signalling. Inhibition of Exo70 by RNA interference (RNAi) or antibody microinjection blocks the formation of actin-based membrane protrusions and affects various aspects of cell motility. We propose that Exo70, in addition to functioning in exocytosis, also regulates actin at the leading edges of migrating cells, therefore coordinating cytoskeleton and membrane traffic during cell migration.

0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delivery and final fusion of the secretory vesicles with the relevant target membrane are hierarchically organized and reciprocally interconnected multi-step processes involving not only specific protein-protein interactions, but also specific protein-phospholipid interactions. The exocyst was discovered as a tethering complex mediating initial encounter of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model Opisthokont cells, the exocyst was shown to directly interact with both microtubule and microfilament cytoskeleton and related motor proteins as well as with the PM via phosphatidylinositol 4, 5-bisphosphate specific binding, which directly affects cortical cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-cytoskeleton-PM interactions in order to open a perspective for future research in this area in plant cells.
    Frontiers in Plant Science 01/2014; 4:543. DOI:10.3389/fpls.2013.00543 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here, we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2 and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoform expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal-but not the epithelial-isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion.
    Developmental Cell 12/2013; 27(5):560-573. DOI:10.1016/j.devcel.2013.10.020 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Directed cell migration and axonal guidance are essential steps in neural development that share many molecular mechanisms. The guidance of developing axons and migrating neurons is likely to depend on the precise control of plasmalemma turnover in selected regions of leading edges and growth cones, respectively. Previous results provided evidence of a signaling mechanism that couples chemotropic deleted in colorectal cancer (DCC)/Netrin-1 axonal guidance and exocytosis through Syntaxin1(Sytx1)/TI-VAMP SNARE proteins. Here we studied whether Netrin-1-dependent neuronal migration relies on a similar SNARE mechanism. We show that migrating neurons in the lower rhombic lip (LRL) express several SNARE proteins, and that DCC co-associates with Sytx1 and TI-VAMP in these cells. We also demonstrate that cleavage of Sytx1 by botulinum toxin C1 (BoNT/C1) abolishes Netrin-1-dependent chemoattraction of migrating neurons, and that interference of Sytx1 functions with shRNAs or Sytx1-dominant negatives disrupts Netrin-1-dependent chemoattraction of LRL neurons. These findings indicate that a Sytx1/DCC interaction is required for Netrin-1 guidance of migrating neurons, thereby highlighting a relationship between guidance signaling and SNARE proteins that regulate membrane turnover.
    European Journal of Neuroscience 09/2012; 38(2). DOI:10.1111/j.1460-9568.2012.08259.x · 3.67 Impact Factor

Preview

Download
2 Downloads
Available from