Article

In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis.

First Department of Pathology, Shiga University of Medical Science, Seta Tsukinowa, Otsu 520-2192, Shiga, Japan.
Oncology Reports (Impact Factor: 2.19). 01/2007; 16(6):1357-62. DOI: 10.3892/or.16.6.1357
Source: PubMed

ABSTRACT Pathogenic mechanisms responsible for inflammatory bowel disease (IBD) are poorly understood. In an IBD animal model, the oral administration of polysaccharides such as dextran sulfate sodium (DSS) induces colitis, which exhibit several clinical and histological features for IBD. However, pathogenic factors in the development of colitis remain unclear. Therefore, we investigated possible mechanisms for DSS-induced colitis, and mainly focused on biological responses from an intestinal epithelial cell line, Caco-2. Cytotoxicity and cytokine release were measured using MTS assays and ELISA, respectively. The effect of DSS on the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers was also evaluated. Cell cycle progression was estimated using antibodies directed against p53 and cdc-2 proteins. The generation of reactive oxygen species (ROS) was measured using a DCFH-DA method. Pyridylamino-DSS (PA-DSS) was used as a fluorometric label in order to investigate fluorescence-microscopically the location of DSS in Caco-2 cells. DSS induced cytotoxicity on Caco-2 cells at 5%. DSS also induced strong TEER decrease at 3%. DSS induced the weak release of IL-8, IL-6, and TGF-beta1. Remarkably DSS arrested Caco-2 cell cycle and reduced the intracellular generation of ROS. Under fluorescence microscopy, PA-DSS entered cells and bound to the nucleus, indicating this binding of DSS may be involved in the cell cycle arrest of Caco-2 cells. The cell cycle arrest and reduced intracellular generation of ROS may be involved during initiation or throughout the early stages of DSS-induced colitis.

0 Followers
 · 
75 Views
  • 01/2010; 2(1):1-157. DOI:10.4199/C00020ED1V01Y201011ISP011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3-/- mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3-/- mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p = 0.0018), as well as decreased production of IL-6 (p<0.0001), TNF (p = 0.0038), and IFN-γ (p = 0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon.
    PLoS ONE 07/2014; 9(7):e101622. DOI:10.1371/journal.pone.0101622 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14(+)TLR4(-), whereas cancerous tissues were CD14(+)TLR4(+), by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14(+)TLR4(+) colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14(+)TLR4(-)) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.Cell Death and Differentiation advance online publication, 30 January 2015; doi:10.1038/cdd.2014.240.