Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes

Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico.
Glia (Impact Factor: 5.47). 02/2007; 55(3):274-81. DOI: 10.1002/glia.20455
Source: PubMed

ABSTRACT Glial cell-mediated potassium and glutamate homeostases play important roles in the regulation of neuronal excitability. Diminished potassium and glutamate buffering capabilities of astrocytes result in hyperexcitability of neurons and abnormal synaptic transmission. The role of the different K+ channels in maintaining the membrane potential and buffering capabilities of cortical astrocytes has not yet been definitively determined due to the lack of specific K+ channel blockers. The purpose of the present study was to assess the role of the inward-rectifying K+ channel subunit Kir4.1 on potassium fluxes, glutamate uptake and membrane potential in cultured rat cortical astrocytes using RNAi, whole-cell patch clamp and a colorimetric assay. The membrane potentials of control cortical astrocytes had a bimodal distribution with peaks at -68 and -41 mV. This distribution became unimodal after knockdown of Kir4.1, with the mean membrane potential being shifted in the depolarizing direction (peak at -45 mV). The ability of Kir4.1-suppressed cells to mediate transmembrane potassium flow, as measured by the current response to voltage ramps or sequential application of different extracellular [K+], was dramatically impaired. In addition, glutamate uptake was inhibited by knock-down of Kir4.1-containing channels by RNA interference as well as by blockade of Kir channels with barium (100 microM). Together, these data indicate that Kir4.1 channels are primarily responsible for significant hyperpolarization of cortical astrocytes and are likely to play a major role in potassium buffering. Significant inhibition of glutamate clearance in astrocytes with knock-down of Kir4.1 highlights the role of membrane hyperpolarization in this process.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
    Psychiatric Clinics of North America 12/2014; 37(4):653-678. DOI:10.1016/j.psc.2014.08.008 · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inwardly rectifying potassium (Kir) channel subunit Kir4.1 is specifically expressed in brain astrocytes and Kir4.1-containing channels (Kir4.1 channels) mediate astroglial spatial potassium (K +) buffering. Recent advances in Kir4.1 research revealed that Kir4.1 channels can serve as a novel therapeutic target for epilepsy. Specifically, reduced expression or dysfunction of Kir4.1 channels seems to be involved in generation of generalized tonic-clonic seizures (GTCS) in animal models of epilepsy and patients with temporal lobe epilepsy. In addition, recent clinical studies showed that loss-of-function mutations of human gene (KCNJ10) encoding Kir4.1 elicit " EAST " or " SeSAME " syndrome which manifests as GTCS and ataxia. Although the precise mechanisms remain to be clarified, it is suggested that dysfunction of Kir4.1 channels disrupts spatial K + buffering by astrocytes, elevates extracellular levels of K + and/or glutamate and causes abnormal excitation of neurons in the limbic regions and neocortex. All these findings suggest that agents that activate or up-regulateastroglialKir4.1 channels would be effective for epilepsy. In addition, docking simulation analysis usingtheKir4.1 homology model provide simportant information for designing new Kir4.1 ligands. Discovery of suchagents that activate or up-regulate Kir4.1 channels would be a novel approach for the treatment of epilepsy.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy is a neurological disorder that affects around 1% of the population worldwide. The two main therapies, pharmacology and the electrical stimulation, both have some shortcomings. For instance, pharmacological therapy is frequently accompanied by side effects, and current anticonvulsive drugs fail to be effective to around a third of patients. These patients could suffer astrocyte-related epilepsy, as increasing evidence indicates that dysfunctions of astrocytes can result in epilepsy. However, epilepsy drugs that affect astrocytes are not available currently. Although electrical stimulation has benefited many patients, the electrode stimulates unselective neurons or circuits. All these need to develop new strategies for improving the life of the patients. As channelrhodopsins (ChRs) were discovered, a novel method referred to as “optogenetics” was developed. It has advantages over electrical stimulation of being less-invasiveness and allowing spatiotemporally stimulation. Recently, a number of experiments have explored the treatments for epilepsy with optogenetic control of neurons. Here, we discuss the possibility that an optogenetic approach could be used to control the release of gliotransmitters and improve astrocyte function such as glutamate and K+ uptake, and thereby offer a potential strategy to investigate and treat astrocyte-related epilepsy.
    Brain Research Bulletin 11/2014; 110. DOI:10.1016/j.brainresbull.2014.10.013 · 2.97 Impact Factor


Available from
Jun 6, 2014