Article

Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury.

Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2006; 103(46):17513-8. DOI: 10.1073/pnas.0602841103
Source: PubMed

ABSTRACT Reactive astrocytes in neurotrauma, stroke, or neurodegeneration are thought to undergo cellular hypertrophy, based on their morphological appearance revealed by immunohistochemical detection of glial fibrillary acidic protein, vimentin, or nestin, all of them forming intermediate filaments, a part of the cytoskeleton. Here, we used a recently established dye-filling method to reveal the full three-dimensional shape of astrocytes assessing the morphology of reactive astrocytes in two neurotrauma models. Both in the denervated hippocampal region and the lesioned cerebral cortex, reactive astrocytes increased the thickness of their main cellular processes but did not extend to occupy a greater volume of tissue than nonreactive astrocytes. Despite this hypertrophy of glial fibrillary acidic protein-containing cellular processes, interdigitation between adjacent hippocampal astrocytes remained minimal. This work helps to redefine the century-old concept of hypertrophy of reactive astrocytes.

1 Bookmark
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) refers to brain damage resulting from external mechanical force such as a blast or crash. Our current understanding of TBI is derived mainly from in vivo studies that show measurable biological effects on neurons sampled after TBI. Little is known about the early responses of brain cells during stimuli and which features of the stimulus are most critical to cell injury. We generated defined shear stress in a microfluidic chamber using a fast pressure servo and examined the intracellular Ca2+ levels in cultured adult astrocytes. Shear stress increased intracellular Ca2+ depending on the magnitude, duration and the rise time of the stimulus. Square pulses with a fast rise time (~ 2 ms) caused transient increases in intracellular Ca2+, but when the rise time was extended to 20 ms, the response was much less. The threshold for a response is a matrix of multiple parameters. Cells can integrate the effect of shear force from repeated challenges: a pulse train of ten narrow pulses (11.5 dyn/cm2 and 10 ms wide) resulted in a four-fold increase in Ca2+ relative to a single pulse of the same amplitude 100 ms wide. The Ca2+ increase was eliminated in Ca2+-free media, but was observed after depleting the intracellular Ca2+ stores with thapsigargin suggesting the need for a Ca2+ influx. The Ca2+ influx was inhibited by extracellular Gd3+, a non-specific inhibitor of mechanosensitive ion channels (MSCs), but it was not affected by the more specific inhibitor GsMTx4. The voltage gated channel blockers, nifedipine, diltiazem, and verapamil were also ineffective. The data shows that the mechanically induced Ca2+ influx commonly associated with neuron models for TBI is also present in astrocytes, and there is a viscoelastic/plastic coupling of shear stress to the Ca2+ influx. The site of Ca2+ influx has yet to be determined.
    Journal of Neurotrauma 12/2014; · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is crucial for defining their roles in the healthy and diseased CNS. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Neurobiology 06/2015; 32. · 6.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic cerebral hypoperfusion during aging may cause progressive neurodegeneration as ischemic conditions persist. Proper functioning of the interplay between neurons and glia is fundamental for the functional organization of the brain. The aim of our research was to study the pathophysiological mechanisms, and particularly the derangement of the interplay between neurons and astrocytes-microglia with the formation of "triads," in a model of chronic cerebral hypoperfusion induced by the two-vessel occlusion (2VO) in adult Wistar rats (n = 15). The protective effect of dipyridamole given during the early phases after 2VO (4 mg/kg/day i.v., the first 7 days after 2VO) was verified (n = 15). Sham-operated rats (n = 15) were used as controls. Immunofluorescent triple staining of neurons (NeuN), astrocytes (GFAP), and microglia (IBA1) was performed 90 days after 2VO. We found significantly higher amount of "ectopic" neurons, neuronal debris and apoptotic neurons in CA1 Str. Radiatum and Str. Pyramidale of 2VO rats. In CA1 Str. Radiatum of 2VO rats the amount of astrocytes (cells/mm(2)) did not increase. In some instances several astrocytes surrounded ectopic neurons and formed a "micro scar" around them. Astrocyte branches could infiltrate the cell body of ectopic neurons, and, together with activated microglia cells formed the "triads." In the triad, significantly more numerous in CA1 Str. Radiatum of 2VO than in sham rats, astrocytes and microglia cooperated in the phagocytosis of ectopic neurons. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Dypiridamole significantly reverted all the above described events. The protective effect of chronic administration of dipyridamole might be a consequence of its vasodilatory, antioxidant and anti-inflammatory role during the early phases after 2VO.
    Frontiers in Aging Neuroscience 11/2014; 6:322. · 2.84 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
Jun 1, 2014