A systematic RNA interference screen reveals a cell migration gene network in C-elegans

Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
Journal of Cell Science (Impact Factor: 5.43). 01/2007; 119(Pt 23):4811-8. DOI: 10.1242/jcs.03274
Source: PubMed

ABSTRACT Cell migration is essential during embryonic development and tissue morphogenesis. During gonadogenesis in the nematode Caenorhabditis elegans, migration of the distal tip cells forms two U-shaped gonad arms. Malformation results if the distal tip cells stop prematurely or follow an aberrant path, and abnormalities are easily visualized in living nematodes. Here we describe the first comprehensive in vivo RNA interference screen for genes required for cell migration. In this non-biased screen, we systematically analyzed 16,758 RNA-interference depletion experiments by light microscopy and identified 99 genes required for distal tip cell migration. Genetic and physical interaction data connect 59 of these genes to form a cell migration gene network that defines distal tip cell migration in vivo.

13 Reads
  • Source
    • "dyn-1 loss of function mutants are embryonic lethal [36], [38] due to endocytosis defects. Beyond this main phenotype, defective DYN-1 causes failure in engulfment [36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal regulation of cell migration and altered rearrangement of cytoskeleton are characteristic of metastatic cells. The first described suppressor of metastatic processes is NM23-H1, which displays NDPK (nucleoside-diphosphate kinase) activity. To better understand the role of nm23 genes in cell migration, we investigated the function of NDK-1, the sole Caenorhabditis elegans homolog of group I NDPKs in distal tip cell (DTC) migration. Dorsal phase of DTC migration is regulated by integrin mediated signaling. We find that ndk-1 loss of function mutants show defects in this phase. Epistasis analysis using mutants of the α-integrin ina-1 and the downstream functioning motility-promoting signaling module (referred to as CED-10 pathway) placed NDK-1 downstream of CED-10/Rac. As DTC migration and engulfment of apoptotic corpses are analogous processes, both partially regulated by the CED-10 pathway, we investigated defects of apoptosis in ndk-1 mutants. Embryos and germ cells defective for NDK-1 showed an accumulation of apoptotic cell corpses. Furthermore, NDK-1::GFP is expressed in gonadal sheath cells, specialized cells for engulfment and clearence of apoptotic corpses in germ line, which indicates a role for NDK-1 in apoptotic corpse removal. In addition to the CED-10 pathway, engulfment in the worm is also mediated by the CED-1 pathway. abl-1/Abl and abi-1/Abi, which function in parallel to both CED-10/CED-1 pathways, also regulate engulfment and DTC migration. ndk-1(-);abi-1(-) double mutant embryos display an additive phenotype (e. g. enhanced number of apoptotic corpses) which suggests that ndk-1 acts in parallel to abi-1. Corpse number in ndk-1(-);ced-10(-) double mutants, however, is similar to ced-10(-) single mutants, suggesting that ndk-1 acts downstream of ced-10 during engulfment. In addition, NDK-1 shows a genetic interaction with DYN-1/dynamin, a downstream component of the CED-1 pathway. In summary, we propose that NDK-1/NDPK might represent a converging point of CED-10 and CED-1 pathways in the process of cytoskeleton rearrangement.
    PLoS ONE 03/2014; 9(3):e92687. DOI:10.1371/journal.pone.0092687 · 3.23 Impact Factor
  • Source
    • "No putative downstream partners of MAX-2 or PAK-1 have been identified. An RNAi screen has identified many other factors regulating DTC migration (Cram et al. 2006), and the roles of many are not understood. "
    [Show abstract] [Hide abstract]
    ABSTRACT: p21-activated kinases (Paks) are prominent mediators of Rac/Cdc42-dependent and -independent signaling and regulate signal transduction and cytoskeletal-based cell movements. We used the reproducible migrations of the Caenorhabditis elegans gonadal distal tip cells to show that two of the three nematode Pak proteins, MAX-2 and PAK-1, function redundantly in regulation of cell migration but are regulated by very different mechanisms. First, we suggest that MAX-2 requires CED-10/Rac function and thus functions canonically. Second, PIX-1 and GIT-1 function in the same role as PAK-1, and PAK-1 interaction with PIX-1 is required for PAK-1 activity; thus, PAK-1 functions noncanonically. The human Pak-Pix-Git complex is central to noncanonical Pak signaling and requires only modest Rac/CDC-42 input. Unlike the human complex, our results suggest that the C. elegans Pak-Pix-Git complex requires PAK-1 kinase domain activity. This study delineates signaling network relationships in this cell migration model, thus providing potential further mechanistic insights and an assessment of total Pak contribution to cell migration events.
    G3-Genes Genomes Genetics 02/2013; 3(2):181-95. DOI:10.1534/g3.112.004416 · 3.20 Impact Factor
  • Source
    • "RNAi experiments were performed at 20°C. The original ccdc-55 RNAi observations were made using the Ahringer clone sjj_C16C10.6 (Cram, 2006). This construct is a genomic fragment overlapping the middle exon of the gene. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC.
    Mechanisms of development 02/2012; 128(11-12):548-59. DOI:10.1016/j.mod.2012.01.003 · 2.44 Impact Factor
Show more