Article

Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells.

Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
Oncogene (Impact Factor: 8.56). 06/2007; 26(21):3069-80. DOI: 10.1038/sj.onc.1210106
Source: PubMed

ABSTRACT Epstein-Barr virus (EBV) infection is closely associated with nasopharyngeal carcinoma (NPC) and can be detected in early premalignant lesions of nasopharyngeal epithelium. The latent membrane protein 1 (LMP1) is an oncoprotein encoded by the EBV and is believed to play a role in transforming premalignant nasopharyngeal epithelial cells into cancer cells. RASSF1A is a tumor-suppressor gene commonly inactivated in many types of human cancer including NPC. In this study, we report a novel function of LMP1, in down-regulating RASSF1A expression in human epithelial cells. Downregulation of RASSF1A expression by LMP1 is dependent on the activation of intracellular signaling of NF-kappaB involving the C-terminal activating regions (CTARs) of LMP1. LMP1 expression also suppresses the transcriptional activity of the RASSF1A core promoter. RASSF1A stabilizes microtubules and regulates mitotic events. Aberrant mitotic spindles and chromosome aberrations are reported phenotypes in RASSF1A inactivated cells. In this study, we observed that LMP1 expression in human epithelial cells could induce aberrant mitotic spindles, disorganized interphase microtubules and aneuploidy. LMP1 expression could also suppress microtubule dynamics as exemplified by tracking movements of the growing tips of microtubules in live cells by transfecting EGFP-tagged EB1 into cells. The aberrant mitotic spindles and interphase microtubule organization induced by LMP1 could be rescued by transfecting RASSF1A expression plasmid into cells. Downregulation of RASSF1A expression by LMP1 may facilitate its role in transformation of premalignant nasopharyngeal epithelial cells into cancer cells.

0 Bookmarks
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human NESG1 (CCDC19) gene was originally isolated in our laboratory from human nasopharynx tissue. However, the biological and clinical significances of this gene remain largely unknown. In this report, two errors in the originally submitted sequence of human NESG1 gene were found, and the open reading frame sequence of NESG1 (Accession number: NM_012337.1) was revised and updated in the NCBI database (Accession number: NM_012337.2). The antibody raised against the revised sequence of NESG1 detected a single band of 66 kD in human nasopharynx tissues. NESG1 transcripts were specifically expressed in the nasopharynx epithelium. Expression of NESG1 transcripts and protein was downregulated or absent in nasopharyngeal carcinoma (NPC) tissues and cell lines in comparison to that in the normal nasopharynx tissues. The levels of NESG1 protein were significantly greater in the low-grade NPC tissues than that in the high-grade NPC tissues. Induced expression of NESG1 in otherwise NESG1-negative 5-8F cells not only significantly decreased cell proliferation, G1-S phase transition, but also markedly inhibited the ability of cell migration and invasion as well as in vivo tumorigenesis. Furthermore, NESG1 also significantly regulated the expression of cell cycle regulator CCNA1 and p21. Our findings first provided evidence that NESG1 may act as a tumor suppressor by inhibiting cell proliferation, invasion and migration of NPC cells.
    International Journal of Cancer 06/2011; 128(11):2562-71. · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effective antitumorigenic potential of nonsteroidal anti-inflammatory drugs (NSAIDs) and eicosonoid (EP; EP1-4) receptor antagonists prompted us to test their efficacy in Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) related lymphomas. Our study demonstrated that (1) EP1-4 receptor protein levels vary among the various non-Hodgkin’s lymphoma (NHL) cell lines tested (BCBL-1:KSHV+/EBV-;BC-3: KSHV+/EBV-; Akata/EBV+: KSHV-/EBV+; and JSC-1 cells: KSHV+/EBV + cells); (2) 5.0 μM of EP1 antagonist (SC-51322) had a significant antiproliferative effect on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; (3) 50.0 μM of EP2 antagonist (AH6809) was required to induce a significant antiproliferative effect on BCBL-1, Akata/EBV+, and JSC-1 cells; (4) 5.0 μM of EP4 antagonist (GW 627368X) had a significant antiproliferative effect on BC-3, Akata/EBV+, and JSC-1 cells; (5) COX-2 selective inhibitor celecoxib (5.0 μM) had significant antiproliferative effects on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; and (6) a combination of 1.0 μM each of celecoxib, SC-51322 and GW 627368X could potentiate the proapoptotic properties of celecoxib or vice-versa. Overall, our studies identified the synergistic antiproliferative effect of NSAIDs and EP receptor blockers on KSHV and EBV related B cell malignancies.
    Translational Research. 06/2013; 161(6):447–468.
  • Source
    http://sunzi.lib.hku.hk/hkuto/record/B38784750.

Full-text

View
17 Downloads
Available from
May 30, 2014