GSK3 at the edge: regulation of developmental specification and cell polarization.

Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
Current drug targets (Impact Factor: 3.93). 12/2006; 7(11):1411-9. DOI: 10.2174/1389450110607011411
Source: PubMed

ABSTRACT GSK3 is a multifunctional protein kinase that is pivotal for the regulation of metabolism, the cytoskeleton, and gene expression. Multicellular eukaryotes utilize GSK3 as a molecular switch to specify distinct cell fates, but also to organize these cells spatially within the developing organism. We discuss the central role of GSK3 in control of the Wnt, Hedgehog, cAMP (in Dictyostelium), and other signaling pathways, but also focus on significant new evidence that GSK3 is required to establish cell polarity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine kinase that participates in numerous signalling pathways involved in diverse physiological processes. Several of these pathways are implicated in disease pathogenesis, which has prompted efforts to develop GSK3-specific inhibitors for therapeutic applications. However, before now, there has been no strong rationale for targeting GSK3 in malignancies. Here we report pharmacological, physiological and genetic studies that demonstrate an oncogenic requirement for GSK3 in the maintenance of a specific subtype of poor prognosis human leukaemia, genetically defined by mutations of the MLL proto-oncogene. In contrast to its previously characterized roles in suppression of neoplasia-associated signalling pathways, GSK3 paradoxically supports MLL leukaemia cell proliferation and transformation by a mechanism that ultimately involves destabilization of the cyclin-dependent kinase inhibitor p27Kip1. Inhibition of GSK3 in a preclinical murine model of MLL leukaemia provides promising evidence of efficacy and earmarks GSK3 as a candidate cancer drug target.
    Nature 09/2008; 455(7217):1205-1209. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR. Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection. This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant therapeutics and increase the understanding of potential side effects.
    PLoS ONE 01/2012; 7(11):e49930. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity-dependent dendritic development represents a crucial step in brain development, but its underlying mechanisms remain to be fully elucidated. Here we report that glycogen synthase kinase 3β (GSK3β) regulates dendritic development in an activity-dependent manner. We find that GSK3β in somatodendritic compartments of hippocampal neurons becomes highly phosphorylated at serine-9 upon synaptogenesis. This phosphorylation-dependent GSK3β inhibition is mediated by neurotrophin signalling and is required for dendritic growth and arbourization. Elevation of GSK3β activity leads to marked shrinkage of dendrites, whereas its inhibition enhances dendritic growth. We further show that these effects are mediated by GSK3β regulation of surface GABAA receptor levels via the scaffold protein gephyrin. GSK3β activation leads to gephyrin phosphorylation to reduce surface GABAA receptor clusters, resulting in neuronal hyperexcitability that causes dendrite shrinkage. These findings thus identify GSK3β as a key player in activity-dependent regulation of dendritic development by targeting the excitatory-inhibitory balance of the neuron.
    Nature Communications 10/2013; 4:2628. · 10.74 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014