Article

A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1

Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics at the Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Blood (Impact Factor: 9.78). 03/2007; 109(6):2276-84. DOI: 10.1182/blood-2006-07-038430
Source: PubMed

ABSTRACT To molecularly define high-risk disease, we performed microarray analysis on tumor cells from 532 newly diagnosed patients with multiple myeloma (MM) treated on 2 separate protocols. Using log-rank tests of expression quartiles, 70 genes, 30% mapping to chromosome 1 (P < .001), were linked to early disease-related death. Importantly, most up-regulated genes mapped to chromosome 1q, and down-regulated genes mapped to chromosome 1p. The ratio of mean expression levels of up-regulated to down-regulated genes defined a high-risk score present in 13% of patients with shorter durations of complete remission, event-free survival, and overall survival (training set: hazard ratio [HR], 5.16; P < .001; test cohort: HR, 4.75; P < .001). The high-risk score also was an independent predictor of outcome endpoints in multivariate analysis (P < .001) that included the International Staging System and high-risk translocations. In a comparison of paired baseline and relapse samples, the high-risk score frequency rose to 76% at relapse and predicted short postrelapse survival (P < .05). Multivariate discriminant analysis revealed that a 17-gene subset could predict outcome as well as the 70-gene model. Our data suggest that altered transcriptional regulation of genes mapping to chromosome 1 may contribute to disease progression, and that expression profiling can be used to identify high-risk disease and guide therapeutic interventions.

0 Followers
 · 
207 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Highly activated/expanded natural killer (NK) cells can be generated by stimulation with the human leukocyte antigen-deficient cell line K562, genetically modified to express 41BB-ligand and membrane-bound interleukin (IL)15. We tested the safety, persistence, and activity of expanded NK cells generated from myeloma patients (auto-NK) or haploidentical family donors (allo-NK) in heavily pretreated patients with high-risk relapsing myeloma. The preparative regimen comprised bortezomib only or bortezomib and immunosuppression with cyclophosphamide, dexamethasone, and fludarabine. NK cells were shipped overnight either cryopreserved or fresh. In 8 patients, up to 1×10 NK cells/kg were infused on day 0 and followed by daily administrations of IL2. Significant in vivo expansion was observed only in the 5 patients receiving fresh products, peaking at or near day 7, with the highest NK-cell counts in 2 subjects who received cells produced in a high concentration of IL2 (500 U/mL). Seven days after infusion, donor NK cells comprised >90% of circulating leukocytes in fresh allo-NK cell recipients, and cytolytic activity against allogeneic myeloma targets was retained in vitro. Among the 7 evaluable patients, there were no serious adverse events that could be related to NK-cell infusion. One patient had a partial response and in another the tempo of disease progression decreased; neither patient required further therapy for 6 months. In the 5 remaining patients, disease progression was not affected by NK-cell infusion. In conclusion, infusion of large numbers of expanded NK cells was feasible and safe; infusing fresh cells was critical to their expansion in vivo.
    Journal of immunotherapy (Hagerstown, Md.: 1997) 11/2014; DOI:10.1097/CJI.0000000000000059 · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next Generation Sequencing (NGS) methods are rapidly providing remarkable advances in our ability to study the molecular profiles of human cancers. However, the scientific discovery offered by NGS also includes challenges concerning the interpretation of large and non-trivial experimental results. This task is potentially further complicated when a multitude of molecular profiling modalities are available, with the goal of a more integrative and comprehensive analysis of the cancer biology. Microarray transcriptome analyses have resulted in important advances in both the scientific and clinical domains of biomedicine. Importantly, as technology advances, it is critical to leverage what has been gained from historic approaches (e.g., microarrays) with new approaches (NGS). In this regard, necessity dictated a need to utilize and leverage the many years of historical microarray data with new NGS approaches. This is especially important since NGS approaches are now entering clinical medicine. For instance, NGS-based comprehensive analysis of certain cancers has already helped to uncover specific mutations that contribute to the malignant process, identify new therapeutic targets, and improve opportunities for choosing the best treatment for an individual patient. A suite of custom software tools have been developed to rapidly integrate, explore, discover and validate molecular profiling data from the NGS modalities of Whole Exome Sequencing (WES) and RNA-seq with each other, as well as with historical microarray and salient clinical datasets. Importantly, our approach is independent of any particular type of NGS suite(s) or cancer types. This novel bioinformatic framework is now assisting with the scientific and clinical management of patients with multiple myeloma.
    BMC Bioinformatics 10/2014; 15 Suppl 11(Suppl 11):S3. DOI:10.1186/1471-2105-15-S11-S3 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity. Published by Elsevier B.V.
    11/2014; 4C:23-33. DOI:10.1016/j.redox.2014.11.002

Full-text (2 Sources)

Download
36 Downloads
Available from
Jun 5, 2014