Article

Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle

Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030, USA.
Development (Impact Factor: 6.27). 01/2007; 133(24):4891-9. DOI: 10.1242/dev.02693
Source: PubMed

ABSTRACT Recent experiments, showing that both cranial paraxial and splanchnic mesoderm contribute to branchiomeric muscle and cardiac outflow tract (OFT) myocardium, revealed unexpected complexity in development of these muscle groups. The Pitx2 homeobox gene functions in both cranial paraxial mesoderm, to regulate eye muscle, and in splanchnic mesoderm to regulate OFT development. Here, we investigated Pitx2 in branchiomeric muscle. Pitx2 was expressed in branchial arch core mesoderm and both Pitx2 null and Pitx2 hypomorphic embryos had defective branchiomeric muscle. Lineage tracing with a Pitx2cre allele indicated that Pitx2 mutant descendents moved into the first branchial arch. However, markers of both undifferentiated core mesoderm and specified branchiomeric muscle were absent. Moreover, lineage tracing with a Myf5cre allele indicated that branchiomeric muscle specification and differentiation were defective in Pitx2 mutants. Conditional inactivation in mice and manipulation of Pitx2 expression in chick mandible cultures revealed an autonomous function in expansion and survival of branchial arch mesoderm.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
    Journal of Anatomy 06/2012; 222(1). DOI:10.1111/j.1469-7580.2012.01530.x · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches. By contrast, only two enhancers have been implicated in the regulation of MyoD. In this work, we characterize an enhancer element that drives Myf5 expression in the branchial arches from 9.5 days post-coitum and show that its activity in the context of the entire locus is dependent on two highly conserved E-boxes. These binding sites are required in a subset of Myf5-expressing cells including both progenitors and those which have entered the myogenic pathway. The correct levels of expression of Myf5 and MyoD result from activation by musculin and TCF21 through direct binding to specific enhancers. Consistent with this, we show that in the absence of musculin the timing of activation of Myf5 and MyoD is not affected but the expression levels are significantly reduced. Importantly, normal levels of Myf5 expression are restored at later stages, which might explain the absence of particular muscles in the Msc;Tcf21 double-knockout mice.
    Development 03/2012; 139(5):958-67. DOI:10.1242/dev.068015 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development and differentiation of vertebrate skeletal muscle provide an important paradigm to understand the inductive signals and molecular events controlling differentiation of specific cell types. Recent findings show that a core transcriptional network, initiated by the myogenic regulatory factors (MRFs; MYF5, MYOD, myogenin and MRF4), is activated by separate populations of cells in embryos in response to various signalling pathways. This review will highlight how cells from multiple distinct starting points can converge on a common set of regulators to generate skeletal muscle.
    Reproduction (Cambridge, England) 03/2011; 141(3):301-12. DOI:10.1530/REP-10-0394 · 3.26 Impact Factor