Article

Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine

Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
The Journal of Infectious Diseases (Impact Factor: 5.78). 01/2007; 194(12):1650-60. DOI: 10.1086/509259
Source: PubMed

ABSTRACT Gene-based vaccine delivery is an important strategy in the development of a preventive vaccine for acquired immunodeficiency syndrome (AIDS). Vaccine Research Center (VRC) 004 is the first phase 1 dose-escalation study of a multiclade HIV-1 DNA vaccine.
VRC-HIVDNA009-00-VP is a 4-plasmid mixture encoding subtype B Gag-Pol-Nef fusion protein and modified envelope (Env) constructs from subtypes A, B, and C. Fifty healthy, uninfected adults were randomized to receive either placebo (n=10) or study vaccine at 2 mg (n=5), 4 mg (n=20), or 8 mg (n=15) by needle-free intramuscular injection. Humoral responses (measured by enzyme-linked immunosorbant assay, Western blotting, and neutralization assay) and T cell responses (measured by enzyme-linked immunospot assay and intracellular cytokine staining after stimulation with antigen-specific peptide pools) were measured.
The vaccine was well tolerated and induced cellular and humoral responses. The maximal CD4(+) and CD8(+) T cell responses occurred after 3 injections and were in response to Env peptide pools. The pattern of cytokine expression by vaccine-induced HIV-specific T cells evolved over time, with a diminished frequency of interferon- gamma -producing T cells and an increased frequency of interleukin-2-producing T cells at 1 year.
DNA vaccination induced antibody to and T cell responses against 3 major HIV-1 subtypes and will be further evaluated as a potential component of a preventive AIDS vaccine regimen.

1 Follower
 · 
112 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thawing effect due to backfilling in permafrost mining rocks is investigated. The heat transfer equation in rock and backfill is obtained by considering the effect of phase change, heat generation due to cement hydration and temperature dependent material properties. The governing equations are solved using a finite volume numerical method and the phase change phenomenon is modeled based on the manipulation of specific heat, thermal conductivity and density of rock and backfill. The harmonic mean method was employed to handle the change of thermal properties. The effects of different influential parameters such as cement content of backfill, water content of rock and backfill, thermal conductivity of rock and filling material, and the number of adjacent stopes are investigated. Eventually, using the resulting temperature and phase field, a new parameter regarded as the radius of thawing, is introduced.
    International Journal of Rock Mechanics and Mining Sciences 09/2011; 48(7):pp 1068-1076. DOI:10.1016/j.ijrmms.2011.09.002 · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods: Thirty-one adults, 18-55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 10(10) PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results: Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions: Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity.
    PLoS ONE 09/2014; 9(9):e106240. DOI:10.1371/journal.pone.0106240 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of Tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. It is currently not known how to potent generate neutralizing antibodies (NAbs) to the diversity of circulating HIV-1 envelopes (Env) by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Journal of Virology 12/2014; 89(5). DOI:10.1128/JVI.03331-14 · 4.65 Impact Factor

Preview

Download
0 Downloads
Available from