Pheromonal communication in vertebrates.

Department of Physiology, University of Bristol, Medical School Building, University Walk, Bristol BS8 1TD, UK.
Nature (Impact Factor: 38.6). 12/2006; 444(7117):308-15. DOI: 10.1038/nature05404
Source: PubMed

ABSTRACT Recent insights have revolutionized our understanding of the importance of chemical signals in influencing vertebrate behaviour. Previously unknown families of pheromonal signals have been identified that are expanding the traditional definition of a pheromone. Although previously regarded as functioning independently, the main olfactory and vomeronasal systems have been found to have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Studies using gene-targeted mice have revealed an unexpected diversity of chemosensory systems and their underlying cellular and molecular mechanisms. Future developments could show how the functions of the different chemosensory systems are integrated to regulate innate and learned behavioural and physiological responses to pheromones.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members.
    Protein Expression and Purification 01/2014; · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that some main olfactory bulb (MOB) mitral/tufted (M/T) cells send a direct projection to the "vomeronasal" amygdala in female mice and selectively respond to volatile male mouse urinary odors. We asked whether MOB M/T cells that project to the vomeronasal amygdala exist in male mice and whether there is a sexually dimorphic response of these neurons to volatile male urinary pheromones. Gonadectomized male and female mice received bilateral injections of the retrograde tracer, Cholera toxin-B (CTb) into the medial amygdala (Me), which is part of the vomeronasal amygdala. All subjects were then treated with estradiol benzoate and progesterone before being exposed to volatile male urinary odors whereupon they were sacrificed 90 min later. Sections of the MOB were immunostained for Fos protein and/or CTb. Male mice, like females, displayed a small population of MOB M/T cells that project to the Me. While the general localization of these cells was similar in the two sexes, there were statistically significant sex differences in the percentage of MOB M/T cells in the anterior and posterior medial segments of the MOB that were retrogradely labeled by CTb. Male urinary volatiles stimulated equivalent, significant increases in Fos expression by MOB M/T neurons projecting to the Me in the two sexes. By contrast, in the same mice exposure to male urinary volatiles stimulated a significant increase in Fos expression by mitral cells in the accessory olfactory bulb (AOB) only in female subjects. Thus any sexually dimorphic behavioral or neuroendocrine responses to male urinary volatiles likely depend on the differential processing of these odor inputs in the AOB and/or other downstream forebrain structures after their detection by the main olfactory system.
    Neuroscience 11/2010; 172:196-204. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Why are some odors perceived as pleasant while others are not? We review current research on how pleasant and unpleasant odors, that is, odors with positive or negative valence, are processed in the brain of flies and mice. We conclude that in mice pleasant and unpleasant odors are detected via three olfactory subsystems with only one being fully dedicated to unpleasant odors, while the others detect both good and bad odors. Correspondingly, so far no clear segmentation into regions processing exclusively pleasant or unpleasant odors has been identified in the mouse brain. The situation is different in flies, where most odors are sensed via the antenna. Already at the antennal lobe level, that is, the first processing center for olfactory input, odorants seem to be categorized as pleasant or unpleasant. We furthermore discuss why animals at all should make a decision based on olfaction, and why a straightforward and fast processing of odorant valence might be important for survival and reproduction.
    Current opinion in neurobiology 02/2014; 24C:34-38. · 7.21 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014