Decrease of cone opsin mRNA in experimental ocular hypertension

Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53704, USA.
Molecular vision (Impact Factor: 1.99). 02/2006; 12:1272-82.
Source: PubMed


This study was designed to test the hypothesis that photoreceptors are adversely affected in glaucoma. As a measure of this effect, we examined the levels of rod opsin, and red/green and blue cone opsin mRNAs in monkeys with experimental ocular hypertension and glaucoma and in human eyes from donors with diagnosed glaucoma.
Experimental ocular hypertension was induced in one eye of 19 cynomolgous and 2 rhesus monkeys by laser ablation of the trabecular meshwork. In 15 monkeys, the elevated IOP was reduced by trabeculectomy. When the animals had experienced prolonged elevations of IOP (128 to 260 days), they were killed and the eyes enucleated. Fresh retinal tissue from the macula, inferotemporal retina (mid-peripheral), and far peripheral regions were harvested from some animals using a 3 mm trephine. The remaining retinas from these monkeys, and whole retinas from other animals were fixed. RNA isolated from each trephined sample was used for RNase Protection Analysis or real time PCR analysis to quantify opsin mRNA levels from different photoreceptor cell types. Fixed tissue was used for in situ hybridization studies. Human donor eyes (7 glaucoma and 4 control) were obtained from eye banks. All human specimens were used for in situ hybridization studies.
Quantitative mRNA analysis and in situ hybridization studies both showed a reduction in the expression of red/green and blue cone opsin mRNAs in 6 monkey eyes with chronic ocular hypertension, relative to the contralateral eye. No loss of rod opsin mRNA was observed. The principal reduction occurred in cells of the mid-peripheral retina, a region of retina that often shows early and progressive damage in humans with glaucoma. In monkeys with ocular hypertension followed by trabeculectomy, there was a similar decrease in cone opsin mRNAs, but only in six out of fifteen (40%) of the monkeys. The decrease in these animals was correlated with a significantly elevated IOP at some time during the 2 weeks prior to euthanization and not with the extent of glaucomatous damage. Of the 7 human eyes with diagnosed glaucoma that were examined, 5 showed a decrease of cone opsin mRNA in the mid-peripheral retina, whereas none of the 4 normal eyes examined showed a decrease.
Ocular hypertension leading to glaucoma also affects the outer retina, particularly the cone photoreceptors. We speculate that these cells become stressed leading to a disruption in the expression of normal genes, such as that encoding opsin. There is some evidence that this effect is reversible, when IOP levels are reduced.


Available from: Robert Nickells, Apr 22, 2014
  • Source
    • "Total RNA from transfected HCT116 cells was isolated using Tri-reagent (Molecular Research Center, Cincinnati, OH) and treated extensively with DNase I to eliminate contaminating genomic and transfected DNA. First strand cDNA was synthesized and quantitative PCR was performed using the Applied Biosystems (ABI, Foster City, CA) 7300 real time PCR system and ABI SYBR Green PCR Master Mix as described previously [19]. Control reactions, using samples made without reverse transcriptase were also run to verify amplification was from cDNA templates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the translocation step of BAX activation may be impaired.
    BMC Cancer 10/2010; 10:554. DOI:10.1186/1471-2407-10-554 · 3.36 Impact Factor
  • Source
    • "Total retinal RNA was isolated at 1, 3, and 7 days post ONC and 2 μg was used for cDNA synthesis with reverse transcriptase and oligo(dT) [11]. The resulting cDNA was diluted 10-fold and 1 μl was used for each qPCR reaction with SYBR Green PCR master mix (Applied Biosystems, Foster City, CA) and the appropriate HDAC primers (Table 1), as described previously [59]. Each primer set was optimized, and the resulting amplimer cloned and sequenced to confirm identity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs) following an acute injury to the optic nerve. Histone deacetylase 3 (HDAC3) translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA) was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.
    BMC Neuroscience 05/2010; 11(1):62. DOI:10.1186/1471-2202-11-62 · 2.67 Impact Factor
  • Source
    • "Total RNA was isolated from whole retina tissue and cultured cells using Tri-reagent (Molecular Research Center, Cincinnati, OH, U.S.A.). First-strand cDNA was synthesized using oligo-dT as a primer, and quantitative PCR was performed using the ABI (Applied Biosystems) 7300 real-time PCR system and ABI SYBR Green PCR Master Mix as described previously (Pelzel et al., 2006). Standard curves were generated for each product using cloned cDNAs for Bax, Bcl-X and the S16 ribosomal protein to quantify the abundance of cDNA in each sample. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pro-apoptotic Bax is essential for RGC (retinal ganglion cell) death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J(Bax+/-) mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax(-/-) mice), but 129B6(Bax+/-) mice exhibited significant cell loss (similar to wild-type mice). The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T(129B6) to C(DBA/2J)) at position -515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53(-/-) cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.
    ASN Neuro 05/2010; 2(2):e00032. DOI:10.1042/AN20100003 · 4.02 Impact Factor
Show more