Decrease of cone opsin mRNA in experimental ocular hypertension.

Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53704, USA.
Molecular vision (Impact Factor: 2.25). 02/2006; 12:1272-82.
Source: PubMed

ABSTRACT This study was designed to test the hypothesis that photoreceptors are adversely affected in glaucoma. As a measure of this effect, we examined the levels of rod opsin, and red/green and blue cone opsin mRNAs in monkeys with experimental ocular hypertension and glaucoma and in human eyes from donors with diagnosed glaucoma.
Experimental ocular hypertension was induced in one eye of 19 cynomolgous and 2 rhesus monkeys by laser ablation of the trabecular meshwork. In 15 monkeys, the elevated IOP was reduced by trabeculectomy. When the animals had experienced prolonged elevations of IOP (128 to 260 days), they were killed and the eyes enucleated. Fresh retinal tissue from the macula, inferotemporal retina (mid-peripheral), and far peripheral regions were harvested from some animals using a 3 mm trephine. The remaining retinas from these monkeys, and whole retinas from other animals were fixed. RNA isolated from each trephined sample was used for RNase Protection Analysis or real time PCR analysis to quantify opsin mRNA levels from different photoreceptor cell types. Fixed tissue was used for in situ hybridization studies. Human donor eyes (7 glaucoma and 4 control) were obtained from eye banks. All human specimens were used for in situ hybridization studies.
Quantitative mRNA analysis and in situ hybridization studies both showed a reduction in the expression of red/green and blue cone opsin mRNAs in 6 monkey eyes with chronic ocular hypertension, relative to the contralateral eye. No loss of rod opsin mRNA was observed. The principal reduction occurred in cells of the mid-peripheral retina, a region of retina that often shows early and progressive damage in humans with glaucoma. In monkeys with ocular hypertension followed by trabeculectomy, there was a similar decrease in cone opsin mRNAs, but only in six out of fifteen (40%) of the monkeys. The decrease in these animals was correlated with a significantly elevated IOP at some time during the 2 weeks prior to euthanization and not with the extent of glaucomatous damage. Of the 7 human eyes with diagnosed glaucoma that were examined, 5 showed a decrease of cone opsin mRNA in the mid-peripheral retina, whereas none of the 4 normal eyes examined showed a decrease.
Ocular hypertension leading to glaucoma also affects the outer retina, particularly the cone photoreceptors. We speculate that these cells become stressed leading to a disruption in the expression of normal genes, such as that encoding opsin. There is some evidence that this effect is reversible, when IOP levels are reduced.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protein optineurin coded by OPTN gene is involved in several functions including regulation of endocytic trafficking, autophagy and signal transduction. Certain missense mutations in the gene OPTN cause normal tension glaucoma. A glaucoma-causing mutant of optineurin, E50K, induces death selectively in retinal cells. This mutant induces defective endocytic recycling of transferrin receptor by causing inactivation of Rab8 mediated by the GTPase-activating protein, TBC1D17. Here, we have explored the mechanism of E50K-induced cell death. E50K-OPTN-induced cell death was inhibited by co-expression of a catalytically inactive mutant of TBC1D17 and also by shRNA mediated knockdown of TBC1D17. Endogenous TBC1D17 colocalized with E50K-OPTN in vesicular structures. Co-expression of transferrin receptor partially protected against E50K-induced cell death. Overexpression of the E50K-OPTN but not WT-OPTN inhibited autophagy flux. Treatment of cells with rapamycin, an inducer of autophagy, reduced E50K-OPTN-induced cell death. An LC3-binding-defective mutant of E50K-OPTN showed reduced cell death, further suggesting the involvement of autophagy. TBC1D17 localized to autophagosomes and inhibited autophagy flux dependent on its catalytic activity. Knockdown of TBC1D17 rescued cells from E50K-mediated inhibition of autophagy flux. Overall, our results suggest that E50K mutant induced death of retinal cells involves impaired autophagy as well as impaired transferrin receptor function. TBC1D17, a GTPase-activating protein for Rab GTPases, plays a crucial role in E50K-induced impaired autophagy and cell death.
    PLoS ONE 04/2014; 9(4):e95758. DOI:10.1371/journal.pone.0095758 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the long-term effects of laser-photocoagulation (LP)-induced ocular hypertension (OHT) in the innermost and outermost (outer-nuclear and outer segment)-retinal layers (ORL). OHT was induced in the left eye of adult rats. To investigate the ganglion cell layer (GCL) wholemounts were examined at 1, 3 or 6 months using Brn3a-immunodetection to identify retinal ganglion cells (RGCs) and DAPI-staining to detect all nuclei in this layer. To study the effects of LP on the ORL up to 6 months, retinas were: i) extracted fresh to quantify the levels of rod-, S- and L-opsin; ii) cut in cross-sections for morphometric analysis, or; iii) prepared as wholemounts to quantify and study retinal distributions of entire populations of RGCs (retrogradely labeled with fluorogold, FG), S- and L-cones (inmunolabeld). OHT resulted in wedge-like sectors with their apex on the optic disc devoid of Brn3a+RGCs but with large numbers of DAPI+nuclei. The levels of all opsins diminished by 2 weeks and further decreased to 20% of basal-levels by 3 months. Cross-sections revealed focal areas of ORL degeneration. RGC survival at 15 days represented approximately 28% and did not change with time, whereas the S- and L-cone populations diminished to 65% and 80%, or to 20 and 35% at 1 or 6 months, respectively. In conclusion, LP induces in the GCL selective RGCs loss that does not progress after 1 month, and S- and L-cone loss that progresses for up to 6 months. Thus, OHT results in severe damage to both the innermost and the ORL.
    Experimental Eye Research 01/2015; 14. DOI:10.1016/j.exer.2015.01.006 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as microglia, astrocytes and oligodendrocytes, have also been demonstrated to take part in the process of secondary injury. Partial optic nerve transection is a useful model which was established about 13 years ago. The merit of this model compared with other optic nerve injury models used for glaucoma study, including complete optic nerve transection model and optic nerve crush model, is the possibility to separate primary degeneration from secondary degeneration in location. Therefore, it provides a good tool for the study of secondary degeneration. This review will focus on the research progress of the mechanisms of secondary degeneration using partial optic nerve transection model.
    Neural Regeneration Research 03/2014; 9(6):565-74. DOI:10.4103/1673-5374.130093 · 0.23 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014