Retinitis pigmentosa. Lancet

Harvard University, Cambridge, Massachusetts, United States
The Lancet (Impact Factor: 45.22). 12/2006; 368(9549):1795-809. DOI: 10.1016/S0140-6736(06)69740-7
Source: PubMed


Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night vision in adolescence, side vision in young adulthood, and central vision in later life because of progressive loss of rod and cone photoreceptor cells. Measures of retinal function, such as the electroretinogram, show that photoreceptor function is diminished generally many years before symptomic night blindness, visual-field scotomas, or decreased visual acuity arise. More than 45 genes for retinitis pigmentosa have been identified. These genes account for only about 60% of all patients; the remainder have defects in as yet unidentified genes. Findings of controlled trials indicate that nutritional interventions, including vitamin A palmitate and omega-3-rich fish, slow progression of disease in many patients. Imminent treatments for retinitis pigmentosa are greatly anticipated, especially for genetically defined subsets of patients, because of newly identified genes, growing knowledge of affected biochemical pathways, and development of animal models.

39 Reads
  • Source
    • "Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterised by progressive retinal photoreceptor degeneration [1] [2]. The worldwide population affected has been estimated to be over one million individuals, whereas the frequency is approximately 1/4000 [3] [4]. Although RP has several mutations and genetical patterns , the symptoms and histopathological findings are similar [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim. To evaluate the peripapillary retinal nerve fiber layer (RNFL) changes in retinitis pigmentosa (RP) patients using spectral domain optic coherence tomography (Sd-OCT). Methods. We retrospectively examined medical records of forty-four eyes of twenty-two RP patients. The results were also compared with those of previously reported forty-four eyes of twenty-two normal subjects (controls). Records of average and four quadrants peripapillary RNFL thickness measurements using Sd-OCT were assessed. Results. In RP patients the mean RNFL thickness was 97.57 ± 3.21 μm. The RNFL in the superior, temporal, nasal, and inferior quadrants was 119.18 ± 4.47 μm, 84.68 ± 2.31 μm, 75.09 ± 3.34 μm, and 113.88 ± 4.25 μm, respectively. While the thinning of RNFL was predominantly observed in the inferior quadrant, the thickening was mostly noted in temporal quadrant. The differences between mean, superior, and nasal quadrant RNFL thicknesses were not statistically significant when compared with control group. The RP patients had thinner inferior quadrant and thicker temporal quadrant than control group (p < 0.05). Conclusion. Sd-OCT is highly sensitive and effective instrument to detect RNFL changes in RP patients. RNFL measurements can provide information about the progression of retinitis pigmentosa and may provide prognostic indices for future treatment modalities.
    Journal of Ophthalmology 09/2015; 2015(2):157365. DOI:10.1155/2015/157365 · 1.43 Impact Factor
  • Source
    • "Several medical treatments have been proposed to slow down disease progression. Specifically, the trophic and antioxidant effects of vitamins have been evaluated in RP patients in order to demonstrate a protective action on photoreceptors [1] [7] [8]. Other nutritional supplementations, including docosahexaenoic acid (DHA), an omega 3 fatty acid found in high concentration in oil fish, lutein, and gangliosides are cited as a potential therapeutic modality that can help in preserving the visual function of patients with RP. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. Several treatments have been proposed to slow down progression of Retinitis pigmentosa (RP), a hereditary retinal degenerative condition leading to severe visual impairment. The aim of this study is to systematically review data from randomized clinical trials (RCTs) evaluating safety and efficacy of medical interventions for the treatment of RP. Methods. Randomized clinical trials on medical treatments for syndromic and nonsyndromic RP published up to December 2014 were included in the review. Visual acuity, visual field, electroretinogram, and adverse events were used as outcome measures. Results. The 19 RCTs included in this systematic review included trials on hyperbaric oxygen delivery, topical brimonidine tartrate, vitamins, docosahexaenoic acid, gangliosides, lutein, oral nilvadipine, ciliary neurotrophic factor, and valproic acid. All treatments proved safe but did not show significant benefit on visual function. Long term supplementation with vitamin A showed a significantly slower decline rate in electroretinogram amplitude. Conclusions. Although all medical treatments for RP appear safe, evidence emerging from RCTs is limited since they do not present comparable results suitable for quantitative statistical analysis. The limited number of RCTs, the poor clinical results, and the heterogeneity among studies negatively influence the strength of recommendations for the long term management of RP patients.
    Journal of Ophthalmology 09/2015; 2015:737053. DOI:10.1155/2015/737053 · 1.43 Impact Factor
  • Source
    • "Retinitis pigmentosa (RP) is a retinal dystrophy characterized by progressive photoreceptor death, starting with the rods, causing night-blindness and a loss of peripheral vision, followed eventually by total blindness as the cones start to degenerate as well (Heckenlively et al., 1988; Berson, 1993; Hartong et al., 2006). It has a global prevalence of approximately one in 4000 (Hartong et al., 2006). At present, the only clinically available treatment capable of restoring vision in RP (as opposed to slowing or halting progression of visual loss) is retinal prosthesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR) of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity. We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2) in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-β-glycyrrhetinic acid (18BGA, another gap junction blocker) or flupirtine (Flu, a Kv7 potassium channel opener). All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses. Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic prostheses.
    Frontiers in Cellular Neuroscience 08/2015; 9:330. DOI:10.3389/fncel.2015.00330 · 4.29 Impact Factor
Show more