A Kalman filter based methodology for EEG spike enhancement.

Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece.
Computer Methods and Programs in Biomedicine (Impact Factor: 1.56). 03/2007; 85(2):101-8. DOI: 10.1016/j.cmpb.2006.10.003
Source: PubMed

ABSTRACT In this work, we present a methodology for spike enhancement in electroencephalographic (EEG) recordings. Our approach takes advantage of the non-stationarity nature of the EEG signal using a time-varying autoregressive model. The time-varying coefficients of autoregressive model are estimated using the Kalman filter. The results show considerable improvement in signal-to-noise ratio and significant reduction of the number of false positives.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interictal epileptiform discharges (spikes, IEDs) are electrographic markers of epileptic tissue and their quantification is utilized in planning of surgical resection. Visual analysis of long-term multi-channel intracranial recordings is extremely laborious and prone to bias. Development of new and reliable techniques of automatic spike detection represents a crucial step towards increasing the information yield of intracranial recordings and to improve surgical outcome. In this study, we designed a novel and robust detection algorithm that adaptively models statistical distributions of signal envelopes and enables discrimination of signals containing IEDs from signals with background activity. This detector demonstrates performance superior both to human readers and to an established detector. It is even capable of identifying low-amplitude IEDs which are often missed by experts and which may represent an important source of clinical information. Application of the detector to non-epileptic intracranial data from patients with intractable facial pain revealed the existence of sharp transients with waveforms reminiscent of interictal discharges that can represent biological sources of false positive detections. Identification of these transients enabled us to develop and propose secondary processing steps, which may exclude these transients, improving the detector's specificity and having important implications for future development of spike detectors in general.
    Brain Topography 06/2014; · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
    TheScientificWorldJournal. 01/2014; 2014:973063.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. Electroencephalogram (EEG) signals play a critical role in the diagnosis of epilepsy. Multichannel EEGs contain more information than do single-channel EEGs. Automatic detection algorithms for spikes or seizures have traditionally been implemented on single-channel EEG, and algorithms for multichannel EEG are unavailable. This study proposes a physiology-based detection system for epileptic seizures that uses multichannel EEG signals. The proposed technique was tested on two EEG data sets acquired from 18 patients. Both unipolar and bipolar EEG signals were analyzed. We employed sample entropy (SampEn), statistical values, and concepts used in clinical neurophysiology (e.g., phase reversals and potential fields of a bipolar EEG) to extract the features. We further tested the performance of a genetic algorithm cascaded with a support vector machine and post-classification spike matching. We obtained 86.69% spike detection and 99.77% seizure detection for Data Set I. The detection system was further validated using the model trained by Data Set I on Data Set II. The system again showed high performance, with 91.18% detection of spikes and 99.22% seizure detection. We report a de novo EEG classification system for seizure and spike detection on multichannel EEG that includes physiology-based knowledge to enhance the performance of this type of system.
    PLoS ONE 01/2013; 8(6):e65862. · 3.53 Impact Factor

Full-text (3 Sources)

Available from
Jun 1, 2014