Article

Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults.

Department of Medicine, University of Florida, Gainesville, FL 32611, USA.
Human Gene Therapy (Impact Factor: 3.62). 01/2007; 17(12):1177-86. DOI: 10.1089/hum.2006.17.1177
Source: PubMed

ABSTRACT A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) alpha1-antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male. All subjects were either homozygous for the most common AAT mutation (a missense mutation designated PI*Z) or compound heterozygous for PI*Z and another mutation known to cause disease. There were four dose cohorts, ranging from 2.1 x 10(12) vector genomes (VG) to 6.9 x 10(13) VG, with three subjects per cohort. Subjects were injected sequentially in a dose-escalating fashion with a minimum of 14 days between patients. Subjects who had been receiving AAT protein replacement discontinued that therapy 28 days before vector administration. There were no vector-related serious adverse events in any of the 12 participants. Vector DNA sequences were detected in the blood between 1 and 3 days after injection in nearly all patients receiving doses of 6.9 x 10(12) VG or higher. Anti-AAV2 capsid antibodies were present and rose after vector injection, but no other immune responses were detected. One subject who had not been receiving protein replacement exhibited low-level expression of wild-type M-AAT in the serum (82 nM), which was detectable 30 days after receiving an injection of 2.1 x 10(13) VG. Unfortunately, residual but declining M-AAT levels from the washout of the protein replacement elevated background levels sufficiently to obscure any possible vector expression in that range in most of the other individuals in the higher dose cohorts.

Download full-text

Full-text

Available from: Thomas J Conlon, Jun 23, 2015
0 Followers
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pompe Disease is an inherited neuromuscular disease due to deficiency of lysosomal acid alpha-glucosidase (GAA) leading to glycogen accumulation in muscle and motoneurons. Cardiopulmonary failure in infancy leads to early mortality and GAA enzyme replacement therapy (ERT) results in improved survival, reduction of cardiac hypertrophy and developmental gains. However, many children have progressive ventilatory insufficiency and need additional support. Preclinical work shows that gene transfer restores phrenic neural activity and corrects ventilatory deficits. Here we present 180-day safety and ventilatory outcomes for five ventilator-dependent children in a phase I/II clinical trial of AAV-mediated GAA gene therapy (rAAV1-hGAA) following intradiaphragmatic delivery. We assessed if rAAV1-hGAA results in acceptable safety outcome and detectable functional changes, using general safety measures, immunological studies and pulmonary functional testing. All subjects required chronic, full-time mechanical ventilation due to respiratory failure that was unresponsive to both ERT and pre-operative muscle conditioning exercises. After receiving a dose of either 1 x 1012 vg (n=3) or 5 x 1012 vg (n=2) of rAAV1-hGAA, the subjects' unassisted tidal volume was significantly larger (median, IQR: 28.8% increase, 15.2-35.2, p<0.05). Further most patients tolerated appreciably longer periods of unassisted breathing (425% increase, 103-851%, p=0.08). Gene transfer did not improve maximal inspiratory pressure. Expected levels of circulating antibodies and no T cell-mediated immune responses to the vector (capsids) were observed. One subject demonstrated a slight increase in anti-GAA antibody that was not considered clinically significant. These results indicate that rAAV1-hGAA was safe and may lead to modest improvements in volitional ventilatory performance measures. Evaluation of the next five patients will determine if earlier intervention can further enhance the functional benefit.
    Human gene therapy 04/2013; 24(6). DOI:10.1089/hum.2012.250 · 3.62 Impact Factor
  • Source
    Gene Therapy Applications, 08/2011; , ISBN: 978-953-307-541-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes/kg (n=3 subjects/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.
    Human gene therapy 05/2011; 22(10):1239-47. DOI:10.1089/hum.2011.053 · 3.62 Impact Factor