Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm

Department of Craniofacial Development, King's College London, Guy's Tower, London Bridge, United Kingdom.
Developmental Dynamics (Impact Factor: 2.67). 02/2007; 236(2):353-63. DOI: 10.1002/dvdy.21010
Source: PubMed

ABSTRACT The T-box transcription factor Tbx1 has been implicated in DiGeorge syndrome, the most frequent syndrome due to a chromosomal deletion. Gene inactivation of Tbx1 in mice results in craniofacial and branchial arch defects, including myogenic defects in the first and second branchial arches. A T-box binding site has been identified in the Xenopus Myf5 promoter, and in other species, T-box genes have been implicated in myogenic fate. Here we analyze Tbx1 expression in the developing chick embryo relating its expression to the onset of myogenic differentiation and cellular fate within the craniofacial mesoderm. We show that Tbx1 is expressed before capsulin, the first known marker of branchial arch 1 and 2 muscles. We also show that, as in the mouse, Tbx1 is expressed in endothelial cells, another mesodermal derivative, and, therefore, Tbx1 alone cannot specify the myogenic lineage. In addition, Tbx1 expression was identified in both chick and mouse limb myogenic cells, initially being restricted to the dorsal muscle mass, but in contrast, to the head, here Tbx1 is expressed after the onset of myogenic commitment. Functional studies revealed that loss of Tbx1 function reduces the number of myocytes in the head and limb, whereas increasing Tbx1 activity has the converse effect. Finally, analysis of the Tbx1-mesoderm-specific knockout mouse demonstrated the cell autonomous requirement for Tbx1 during myocyte development in the cranial mesoderm.

Download full-text


Available from: Philippa Francis-West, Jan 13, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cranial base exerts a supportive role for the brain and includes the occipital, sphenoid and ethmoid bones that arise from cartilaginous precursors in the early embryo. As the occipital bone and the posterior part of the sphenoid are mesoderm derivatives that arise in close proximity to the notochord and floor plate, it has been assumed that their development, like the axial skeleton, is dependent on Sonic hedgehog (Shh) and modulation of bone morphogenetic protein (Bmp) signalling. Here we examined the development of the cranial base in chick and mouse embryos to compare the molecular signals that are required for chondrogenic induction in the trunk and head. We found that Shh signalling is required but the molecular network controlling cranial base development is distinct from that in the trunk. In the absence of Shh, the presumptive cranial base did not undergo chondrogenic commitment as determined by the loss of Sox9 expression and there was a decrease in cell survival. In contrast, induction of the otic capsule occurred normally demonstrating that induction of the cranial base is uncoupled from formation of the sensory capsules. Lastly, we found that the early cranial mesoderm is refractory to Shh signalling, likely accounting for why development of the cranial base occurs after the axial skeleton. Our data reveal that cranial and axial skeletal induction is controlled by conserved, yet spatiotemporally distinct mechanisms that co-ordinate development of the cranial base with that of the cranial musculature and the pharyngeal arches.
    Developmental Biology 08/2012; 371(2):203-14. DOI:10.1016/j.ydbio.2012.08.011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1-3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates.
    Journal of Anatomy 06/2012; 222(1). DOI:10.1111/j.1469-7580.2012.01530.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development and differentiation of vertebrate skeletal muscle provide an important paradigm to understand the inductive signals and molecular events controlling differentiation of specific cell types. Recent findings show that a core transcriptional network, initiated by the myogenic regulatory factors (MRFs; MYF5, MYOD, myogenin and MRF4), is activated by separate populations of cells in embryos in response to various signalling pathways. This review will highlight how cells from multiple distinct starting points can converge on a common set of regulators to generate skeletal muscle.
    Reproduction (Cambridge, England) 03/2011; 141(3):301-12. DOI:10.1530/REP-10-0394