Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation.

Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden.
Journal of Neuroscience (Impact Factor: 6.91). 12/2006; 26(47):12294-307. DOI: 10.1523/JNEUROSCI.3855-06.2006
Source: PubMed

ABSTRACT Glutamatergic excitatory neurotransmission is dependent on glutamate release from presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Here, we show that VGLUT2 (Slc17a6) is required for life ex utero. Vglut2 null mutant mice die immediately after birth because of the absence of respiratory behavior. Investigations at embryonic stages revealed that neural circuits in the location of the pre-Bötzinger (PBC) inspiratory rhythm generator failed to become active. However, neurons with bursting pacemaker properties and anatomical integrity of the PBC area were preserved. Vesicles at asymmetric synapses were fewer and malformed in the Vglut2 null mutant hindbrain, probably causing the complete disruption of AMPA/kainate receptor-mediated synaptic activity in mutant PBC cells. The functional deficit results from an inability of PBC neurons to achieve synchronous activation. In contrast to respiratory rhythm generation, the locomotor central pattern generator of Vglut2 null mutant mice displayed normal rhythmic and coordinated activity, suggesting differences in their operating principles. Hence, the present study identifies VGLUT2-mediated signaling as an obligatory component of the developing respiratory rhythm generator.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La respiration est une activité rythmique motrice bilatéralement synchronisée présente chez le fœtus et vitale à la naissance. Au cours du développement, des interneurones dans le tronc cérébral s'organisent en réseaux qui génèrent et modulent la commande rythmique respiratoire. Ils y forment deux oscillateurs, actifs chez l'embryon et vitaux à la naissance : l'oscillateur parafacial et le complexe preBötzinger. Les mécanismes qui gouvernent l'assemblage et contraignent la fonction de ces réseaux sont étudiés dans le laboratoire avec des outils génétiques, des techniques histologiques, électrophysiologiques et d'imagerie chez la souris. Etudiant le développement du complexe preBötzinger, nous montrons que des progéniteurs neuraux exprimant le gène à homéobox Dbx1 donnent naissance aux interneurones qui constituent le cœur de l'oscillateur. Ces interneurones (i) sont glutamatergiques et nécessaires à la genèse du rythme, (ii) expriment le gène Robo3 requis pour que leurs axones croisent la ligne médiane et conditionnent la synchronisation de l'activité. Cette étude illustre et affine les liens existant entre les schémas de régionalisation du tube neural et l'émergence de modules fonctionnels en permettant de proposer une signature transcriptionnelle des neurones rythmogènes principaux de la respiration.
    Mémoire de Thèse. 06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vesicular glutamate transporters (VGLUTs) are essential for filling synaptic vesicles with glutamate and mammals express three VGLUT isoforms (VGLUT1-3) with distinct spatiotemporal expression patterns. Here, we find that neurons expressing VGLUT1 have lower release probability and less short-term depression than neurons expressing VGLUT2 or VGLUT3. Investigation of the underlying mechanism identified endophilin A1 as a positive regulator of exocytosis whose expression levels are positively correlated with release efficiency and showed that the differences in release efficiency between VGLUT1- and VGLUT2-expressing neurons are due to VGLUT1's ability to bind endophilin A1 and inhibit endophilin-induced enhancement of release probability.
    Neuron 03/2011; 69(6):1147-59. · 15.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The medial prefrontal cortex (mPFC) and the dorsal hippocampus (DHC) play significant roles in stimulant-induced neurobehavioral effects. Methamphetamine (MAP)-induced hyperactivity has been reported to be involved in the regulation of the glutamatergic system. The present study examined whether the glutamatergic and GABAergic systems in the mPFC and DHC were involved in MAP-induced hyperactivity in mice. A combined kainic acid (KA) or N-methyl-d-aspartate (NMDA) lesion and microdialysis technique targeting both the mPFC and DHC were used. The results showed that both KA- and NMDA-induced lesions of the mPFC facilitated MAP-induced hyperactivity, while neither KA- nor NMDA-induced lesions of the DHC had a similar effect. MAP increased the extracellular glutamate (Glu) levels in the mPFC and reduced Glu levels in the DHC. GABA levels in both of these regions were reduced. A KA or NMDA lesion of the mPFC inhibited the Glu reduction in the DHC, and the same lesion of the DHC inhibited the Glu increase in the mPFC induced by MAP. A NMDA lesion of the mPFC blocked GABA reduction in the DHC, but a lesion of DHC enhanced the GABA decrease in the mPFC induced by MAP. Furthermore, a NMDA lesion of DHC increased the vesicular glutamate transporter-2 (VGLUT2) expression in the mPFC following MAP-administration. These findings indicate that glutamatergic as well as GABAergic systems in these two regions are involved in MAP-induced hyperactivity. Moreover, there may be an inhibitory role in these two regions, especially mediated by NMDA receptors, in MAP-induced abnormal behavior and neurotransmission responses.
    Behavioural brain research 06/2012; 232(1):44-52. · 3.22 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014