A structural model reveals energy transduction in dynein.

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2007; 103(49):18540-5. DOI: 10.1073/pnas.0602867103
Source: PubMed

ABSTRACT Intracellular active transport is driven by ATP-hydrolyzing motor proteins that move along cytoskeletal filaments. In particular, the microtubule-associated dynein motor is involved in the transport of organelles and vesicles, the maintenance of the Golgi, and mitosis. However, unlike kinesin and myosin, the mechanism by which dynein converts chemical energy into mechanical force remains largely a mystery, due primarily to the lack of a high-resolution molecular structure. Using homology modeling and normal mode analysis, we propose a complete atomic structure and a mechanism for force generation by the motor protein dynein. In agreement with very recent electron microscopy (EM) reconstructions showing dynein as a ring-shaped heptamer, our model consists of six ATPases of the AAA (ATPases associated with various cellular activities) superfamily and a C-terminal domain, which is experimentally known to control motor function. Our model shows a coiled coil spanning the diameter of the motor that accounts for previously unidentified structures in EM studies and provides a potential mechanism for long-range communication between the AAA domains. Furthermore, normal mode analysis reveals that the subunits of the motor that contain the nucleotide binding sites exhibit minimal movement, whereas the rest of the motor is very mobile. Our analysis suggests the likely domain rearrangements of the motor unit that generate its power stroke. This study provides insights into the structure and function of dynein that can guide further experimental investigations into energy transduction in dynein.

Download full-text


Available from: Feng Ding, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The μ-opioid receptor (MOR) is the primary target for opioid analgesics. MOR induces analgesia through the inhibition of second messenger pathways and the modulation of ion channels activity. Nevertheless, cellular excitation has also been demonstrated, and proposed to mediate reduction of therapeutic efficacy and opioid-induced hyperalgesia upon prolonged exposure to opioids. In this mini-perspective, we review the recently identified, functional MOR isoform subclass, which consists of six transmembrane helices (6TM) and may play an important role in MOR signaling. There is evidence that 6TM MOR signals through very different cellular pathways and may mediate excitatory cellular effects rather than the classic inhibitory effects produced by the stimulation of the major (7TM) isoform. Therefore, the development of 6TM and 7TM MOR selective compounds represent a new and exciting opportunity to better understand the mechanisms of action and the pharmacodynamic properties of a new class of opioids. Copyright © 2014. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2014; 62. DOI:10.1016/j.pnpbp.2014.11.009 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent sequencing projects and the growth of sequence data banks enable oligopeptide patterns to be characterized on a genome or kingdom level. Several studies have focused on kingdom or habitat classifications based on the abundance of short peptide patterns. There have also been efforts at local structural prediction based on short sequence motifs. Oligopeptide patterns undoubtedly carry valuable information content. Therefore, it is important to characterize these informational peptide patterns to shed light on possible new applications and the pitfalls implicit in neglecting bias in peptide patterns. We have studied four classes of pentapeptide patterns (designated POP, NEP, ORP and URP) in the kingdoms archaea, bacteria and eukaryotes. POP are highly abundant patterns statistically not expected to exist; NEP are patterns that do not exist but are statistically expected to; ORP are patterns unique to a kingdom; and URP are patterns excluded from a kingdom. We used two data sources: the de facto standard of protein knowledge Swiss-Prot, and a set of 386 completely sequenced genomes. For each class of peptides we looked at the 100 most extreme and found both known and unknown sequence features. Most of the known sequence motifs can be explained on the basis of the protein families from which they originate. We find an inherent bias of certain oligopeptide patterns in naturally occurring proteins that cannot be explained solely on the basis of residue distribution in single proteins, kingdoms or databases. We see three predominant categories of patterns: (i) patterns widespread in a kingdom such as those originating from respiratory chain-associated proteins and translation machinery; (ii) proteins with structurally and/or functionally favored patterns, which have not yet been ascribed this role; (iii) multicopy species-specific retrotransposons, only found in the genome set. These categories will affect the accuracy of sequence pattern algorithms that rely mainly on amino acid residue usage. Methods presented in this paper may be used to discover targets for antibiotics, as we identify numerous examples of kingdom-specific antigens among our peptide classes. The methods may also be useful for detecting coding regions of genes.
    BMC Genomics 02/2007; 8:346. DOI:10.1186/1471-2164-8-346 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.
    Cell Motility and the Cytoskeleton 09/2007; 64(9):690-704. DOI:10.1002/cm.20216 · 4.19 Impact Factor