Article

Tuning inflammation and immunity by chemokine sequestration: decoys and more.

Istituto Clinico Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, Italy and Istituto di Patologia Generale, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milan.
Nature reviews. Immunology (Impact Factor: 33.84). 01/2007; 6(12):907-18. DOI: 10.1038/nri1964
Source: PubMed

ABSTRACT A set of chemokine receptors are structurally unable to elicit migration or conventional signalling responses after ligand engagement. These 'silent' (non-signalling) chemokine receptors regulate inflammatory and immune reactions in different ways, including by acting as decoys and scavengers. Chemokine decoy receptors recognize distinct and complementary sets of ligands and are strategically expressed in different cellular contexts. Importantly, viruses and parasites have evolved multiple strategies to elude chemokines, including the expression of decoy receptors. So, decoy receptors for chemokines represent a general strategy to tune, shape and temper innate and adaptive immunity.

1 Follower
 · 
185 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to ionizing radiation modulates immune responses in a complex dose-dependent pattern, with possible anti-inflammatory effects in the low dose range, expression of pro-inflammatory cytokines at moderate doses and immunosuppression after exposure to higher doses due to precursor cell death together with concomitant exacerbated innate immune responses. A central regulator in the immune system is the transcription factor Nuclear Factor κB (NF-κB). NF-κB is involved in the regulation of cellular survival, immune responses and inflammation, resulting in eminent importance in cancerogenesis. After exposure to ionizing radiation, NF-κB activation is initially triggered by ATM which is activated by DNA double strand breaks. Together with the NF-κB essential modulator (NEMO), it serves as a nucleoplasmic shuttle. The pathway converges with the classical NF-κB pathway at IκB kinase (IKK) complex activation. Resulting cytokine expression can activate NF-κB in a positive feed forward loop. Danger signals released from dying cells can activate NF-κB via Toll-like receptors (TLRs). The resulting immune activation can be beneficial or detrimental. In the low dose range, pro- and anticancerogenic effects are possible. In the radiotherapy-relevant dose range, tolerogenic immune responses should be avoided, and an anti-tumor immune response might be supported by TLR agonists activating NF-κB. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 02/2015; DOI:10.1016/j.canlet.2015.02.019 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated lymphangiogenesis. The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting to mimic different stages of the lymphangiogenic process. We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C (VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells. These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis.
    Molecular Cancer 12/2015; 14(1). DOI:10.1186/s12943-015-0306-4 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined Apc(Δ716) Tgfbr2(ΔIEC) compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2(ΔIEC) mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2(ΔIEC) mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis-associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling-repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2(ΔIEC) mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2(ΔIEC) mice formed "long crypts" in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans. Cancer Res; 75(4); 766-76. ©2015 AACR. ©2015 American Association for Cancer Research.
    Cancer Research 02/2015; 75(4):766-76. DOI:10.1158/0008-5472.CAN-14-2036 · 9.28 Impact Factor