Article

Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene.

University Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, CB2 2XY, U.K.
Diabetes (Impact Factor: 7.9). 01/2007; 55(12):3366-71. DOI: 10.2337/db06-0550
Source: PubMed

ABSTRACT The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits food intake, and rodent models of BDNF disruption all exhibit increased food intake and obesity, as well as hyperactivity. We report an 8-year-old girl with hyperphagia and severe obesity, impaired cognitive function, and hyperactivity who harbored a de novo chromosomal inversion, 46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. We have identified the proximal inversion breakpoint that lies 850 kb telomeric of the 5' end of the BDNF gene. The patient's genomic DNA was heterozygous for a common coding polymorphism in BDNF, but monoallelic expression was seen in peripheral lymphocytes. Serum concentration of BDNF protein was reduced compared with age- and BMI-matched subjects. Haploinsufficiency for BDNF was associated with increased ad libitum food intake, severe early-onset obesity, hyperactivity, and cognitive impairment. These findings provide direct evidence for the role of the neurotrophin BDNF in human energy homeostasis, as well as in cognitive function, memory, and behavior.

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4 h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF release from the brain was observed at rest (P < 0.05), and increased two- to threefold during exercise (P < 0.05). Both at rest and during exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three- to fivefold increase in BDNF mRNA expression in the hippocampus and cortex, peaking 2 h after the termination of exercise. These results suggest that the brain is a major but not the sole contributor to circulating BDNF. Moreover, the importance of the cortex and hippocampus as a source for plasma BDNF becomes even more prominent in response to exercise.
    Experimental physiology 09/2009; 94(10):1062-9. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal development and plasticity and plays a role in learning and memory. Moreover, it is well established that BDNF plays a role in the hypothalamic pathway that controls body weight and energy homeostasis. Recent evidence identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein expression was increased in muscle cells that were electrically stimulated, and BDNF increased phosphorylation of AMP-activated protein kinase (AMPK) and acetyl coenzyme A carboxylase-beta (ACCbeta) and enhanced fatty oxidation both in vitro and ex vivo. These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK. Thus, BDNF appears to play a role both in neurobiology and in central as well as peripheral metabolism. The finding of low BDNF levels both in neurodegenerative diseases and in type 2 diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes.
    Experimental physiology 09/2009; 94(12):1153-60. · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increased prevalence and high comorbidity of metabolic syndrome and mental health disorders have prompted investigation into the potential contributing mechanisms. There is a bidirectional association between metabolic syndrome and mental health disorders including schizophrenia, bipolar disorder, depression, anxiety, attention deficit/hyperactivity disorder, and autism spectrum disorders. Medication side effects and social repercussions are contributing environmental factors, but there are a number of shared underlying neurological and physiological mechanisms that explain the high comorbidity between these two disorders. Inflammation is a state shared by both disorders, and it contributes to disruptions of neuroregulatory systems, including the serotonergic, dopaminergic, and neuropeptide Y systems, as well as dysregulation of the hypothalamic-pituitary-adrenal axis. Metabolic syndrome in pregnant women also exposes the developing fetal brain to inflammatory factors that predispose the offspring to metabolic syndrome and mental health disorders. Due to the shared nature of these conditions, treatment should address aspects of both mental health and metabolic disorders. Additionally, interventions need to be developed that can interrupt the transfer of increased risk of the disorders to the next generation. © 2013 S. Karger AG, Basel.
    Neuroendocrinology 09/2013; · 3.54 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
Jun 5, 2014