Article

Insulin-mediated phosphorylation of the proline-rich Akt substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats.

Department of Molecular Cell Biology, Section of Signal Transduction and Ageing, Leiden University Medical Center, Postzone S1-P, P.O. Box 9600, NL-2300 RC Leiden, Netherlands.
Diabetes (Impact Factor: 7.9). 01/2007; 55(12):3221-8. DOI: 10.2337/db05-1390
Source: PubMed

ABSTRACT Clinical insulin resistance is associated with decreased activation of phosphatidylinositol 3'-kinase (PI3K) and its downstream substrate protein kinase B (PKB)/Akt. However, its physiological protein substrates remain poorly characterized. In the present study, the effect of in vivo insulin action on phosphorylation of the PKB/Akt substrate 40 (PRAS40) was examined. In rat and mice, insulin stimulated PRAS40-Thr246 phosphorylation in skeletal and cardiac muscle, the liver, and adipose tissue in vivo. Physiological hyperinsulinemia increased PRAS40-Thr246 phosphorylation in human skeletal muscle biopsies. In cultured cell lines, insulin-mediated PRAS40 phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002. Immunohistochemical and immunofluorescence studies showed that phosphorylated PRAS40 is predominantly localized to the nucleus. Finally, in rats fed a high-fat diet (HFD), phosphorylation of PRAS40 was markedly reduced compared with low-fat diet-fed animals in all tissues examined. In conclusion, the current study identifies PRAS40 as a physiological target of in vivo insulin action. Phosphorylation of PRAS40 is increased by insulin in human, rat, and mouse insulin target tissues. In rats, this response is reduced under conditions of HFD-induced insulin resistance.

0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid accumulation of kidney is a threat to renal physiological function of diabetes. The previous studies on diabetic nephropathy have demonstrated that activated Akt was involved in renal lipogenesis through enhancing transcription factor SREBP-1. PRAS40 is one of the downstream targets of activated Akt that was reported to involve in lipid metabolism in hepatic cells. However, it is still not clear whether PRAS40 is also involved in the renal lipogenesis of diabetes. Our study revealed that phosphorylation of PRAS40-Thr246 known as inactivated style increased in renal tubular cells of diabetic rats accompanied with over-expression of phospho-Akt, SREBP-1 and ADRP. In addition, in vitro experiment also found that high glucose enhanced expression of phospho-PRAS40-Thr246 followed by increased SREBP-1 and lipid droplets in HKC cells. After treated with LY294002, high glucose-induced HKC cells showed decreased phospho-PRAS40-Thr246, phospho-Akt-Ser473 and SREBP-1. Furthermore, wild type PRAS40 vector-caused increased phospho-PRAS40-Thr246 exaggerated lipid deposits in high glucose-treated HKC cells, which was effectively prevented in cells transfected with mutant PRAS40 vector (T246A). These above data suggested that phosphorylation of PRAS40-Thr246 mediated abnormal lipid metabolism in kidney of diabetes and might be the potential target for treating lipogenesis of diabetic nephropathy. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 12/2013; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Context: Silencing proline-rich Akt substrate of 40-kDa (PRAS40) impairs insulin signalling in skeletal muscle. Objective: This study assessed the effects of over-expressing wild type or mutant AAA-PRAS40, in which the major phosphorylation sites and mTORC1-binding site were mutated, on insulin signalling in skeletal muscle. Results: Over-expression of WT-PRAS40, but not AAA-PRAS40, impaired the insulin-mediated activation of the mTORC1-pathway in human skeletal muscle cells (hSkMC). However, insulin-mediated Akt-phosphorylation was increased upon over-expression of WT-PRAS40 both in hSkMC and mouse skeletal muscle. Also over-expression of AAA-PRAS40 had an insulin-sensitizing effect, although to a lesser extent as WT-PRAS40. The insulin-sensitizing effect associated with increased IRS1 protein abundance and inhibition of proteasome activity. Finally, over-expression of WT-PRAS40 reversed hyperinsulinemia-induced insulin resistance. Conclusion: This study identifies PRAS40 as a regulator of insulin sensitivity in hSkMC. In contrast to the mTORC1-pathway, the insulin-sensitizing action of PRAS40 occurs independent of binding of PRAS40 to the mTORC1-complex.
    Archives of Physiology and Biochemistry 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ribosomal protein (RP)-HDM2-p53 pathway has been shown to have key roles in oncogene-induced apoptosis and senescence, but the mechanism regulating this pathway remains elusive. The proline-rich Akt substrate of 40 kDa (PRAS40) has recently been identified as a binding partner and inhibitor of the mechanistic (formerly referred to as mammalian) target of rapamycin complex 1 (mTORC1). Although other inhibitors of mTORC1 are known tumor suppressors, PRAS40 promotes cell survival and tumorigenesis. Here we demonstrate that Akt- and mTORC1-mediated phosphorylation of PRAS40 at T246 and S221, respectively, promotes nuclear-specific association of PRAS40 with ribosomal protein L11 (RPL11). Importantly, silencing of PRAS40 induces upregulation of p53 in a manner dependent on RPL11. This effect is rescued by wild-type PRAS40, but not by the RPL11-binding-null PRAS40T246A mutant. We found that PRAS40 negatively regulates the RPL11-HDM2-p53 nucleolar stress response pathway and suppresses induction of p53-mediated cellular senescence. This work identifies nuclear PRAS40 as a dual-input signaling checkpoint that links cell growth and proliferation to inhibition of cellular senescence. These findings may help to explain the protumorigenic effect of PRAS40 and identify the PRAS40-RPL11 complex as a promising target for p53-restorative anticancer drug discovery.Oncogene advance online publication, 7 April 2014; doi:10.1038/onc.2014.91.
    Oncogene 09/2014; · 7.36 Impact Factor