The role of CYP2A6 in the emergence of nicotine dependence in adolescents.

Tobacco Use Research Center, Department of Psychiatry, University of Pennsylvania, 3535 Market St, Philadelphia, PA 19104, USA.
PEDIATRICS (Impact Factor: 5.3). 02/2007; 119(1):e264-74. DOI: 10.1542/peds.2006-1583
Source: PubMed

ABSTRACT The objectives of our study were to evaluate whether genetic variation in nicotine metabolic inactivation accounted for the emergence of nicotine dependence from mid- to late adolescence and whether initial smoking experiences mediated this effect.
Participants were 222 adolescents of European ancestry who participated in a longitudinal cohort study of the biobehavioral determinants of adolescent smoking. Survey data were collected annually from grade 9 to the end of grade 12. Self-report measures included nicotine dependence, smoking, age first smoked, initial smoking experiences, peer and household member smoking, and alcohol and marijuana use. DNA collected via buccal swabs was assessed for CYP2A6 alleles that are common in white people and are demonstrated to decrease enzymatic function (CYP2A6*2, *4, *9, *12).
Latent growth-curve modeling indicated that normal metabolizers (individuals with no detected CYP2A6 variants) progressed in nicotine dependence at a faster rate and that these increases in nicotine dependence leveled off more slowly compared with slower metabolizers (individuals with CYP2A6 variants). Initial smoking experiences did not account for how CYP2A6 genetic variation impacts nicotine dependence.
These findings may help to promote a better understanding of the biology of smoking behavior and the emergence of nicotine dependence in adolescents and inform future work aimed at understanding the complex interplay between genetic, social, and psychological factors in adolescent smoking behavior.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tobacco-related behaviors and the underlying addiction to nicotine are complex tangles of genetic and environmental factors. Efforts to understand the genetic component of these traits have identified sites in the genome (Single Nucleotide Polymorphisms, or SNPs) that might account for some part of the role of genetics in nicotine addiction. Encouragingly, some of these candidate SNPs remain significant in meta-analyses. However, genetic associations cannot be fully assessed, regardless of statistical significance, without an understanding of the functional consequences of the alleles present at these SNPs. The proper experimental test for allelic function can be very difficult to define, representing a roadblock in translating genetic results into treatment to prevent smoking and other nicotine-related behaviors. This roadblock can be navigated in part with a new web-based tool, the Encyclopedia of DNA Elements (ENCODE). ENCODE is a compilation of searchable data on several types of biochemical functions or “marks” across the genome. These data can be queried for the co-localization of a candidate SNP and a biochemical mark. The presence of a SNP within a marked region of DNA enables the generation of better-informed hypotheses to test possible functional roles of alleles at a candidate SNP. Two examples of such co-localizations are presented. One example reveals ENCODE’s ability to relate a candidate SNP’s function with a gene very far from the physical location of the SNP. The second example reveals a new potential function of the SNP, rs4105144, that has been genetically associated with the number of cigarettes smoked per day. Details for accessing the ENCODE data for this SNP are provided to serve as a tutorial. By serving as a bridge between genetic associations and biochemical function, ENCODE has the power to propel progress in untangling the genetic aspects of nicotine addiction—a major public health concern.
    Pharmacology Biochemistry and Behavior 08/2014; · 2.82 Impact Factor
  • Medicina Clínica 01/2013; 140(2):66–67. · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered.
    Neuropharmacology 09/2013; · 4.82 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014