Delta power in sleep in relation to neuropsychological performance in healthy subjects and schizophrenia patients.

Department of Psychiatry and Psychotherapy, Centre for Integrative Psychiatry (ZIP), Christian-Albrechts-University School of Medicine, Niemannsweg 147, 24105 Kiel, Germany.
Journal of Neuropsychiatry (Impact Factor: 2.4). 02/2006; 18(4):529-35. DOI:10.1176/appi.neuropsych.18.4.529
Source: PubMed

ABSTRACT Delta power in sleep is of increasing interest because of its association with waking performance in neuropsychological tests. In schizophrenia, this link might be impaired because of a decrease in delta power in sleep and pronounced cognitive deficits. The authors analyzed delta power in sleep and neuropsychological performance in 16 patients with schizophrenia on stable medication with amisulpride and 17 healthy subjects. In healthy subjects, the authors found significant positive correlations between morning performance in declarative memory, procedural learning, and attention and delta power, especially in frontal channels. The authors interpret these results in terms of dysfunctions of thalamocortical and prefrontal networks in schizophrenia.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Whereas patients with Alzheimer's disease (AD) experience difficulties forming and retrieving memories, their memory impairments may also partially reflect an unrecognized dysfunction in sleep-dependent consolidation that normally stabilizes declarative memory storage across cortical areas. Patients with amnestic mild cognitive impairment (aMCI) exhibit circumscribed declarative memory deficits, and many eventually progress to an AD diagnosis. Whether sleep is disrupted in aMCI and whether sleep disruptions contribute to memory impairment is unknown. We measured sleep physiology and memory for two nights and found that aMCI patients had fewer stage-2 spindles than age-matched healthy adults. Furthermore, aMCI patients spent less time in slow-wave sleep and showed lower delta and theta power during sleep compared to controls. Slow-wave and theta activity during sleep appear to reflect important aspects of memory processing, as evening-to-morning change in declarative memory correlated with delta and theta power during intervening sleep in both groups. These results suggest that sleep changes in aMCI patients contribute to memory impairments by interfering with sleep-dependent memory consolidation.
    Journal of the International Neuropsychological Society 02/2012; 18(3):490-500. · 2.70 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.
    Journal of Neuroscience 09/2012; 32(39):13411-20. · 6.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases.
    Neuron 11/2012; 76(3):526-33. · 15.77 Impact Factor

Robert Göder