Article

Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Biological Psychiatry (Impact Factor: 9.47). 09/2007; 62(3):198-206. DOI: 10.1016/j.biopsych.2006.08.004
Source: PubMed

ABSTRACT Inhibiting prepotent responses is critical to optimal cognitive and behavioral function across many domains. Several behavioral studies have investigated response inhibition in autism, and the findings varied according to the components involved in inhibition. There has been only one published functional magnetic resonance imaging (fMRI) study so far on inhibition in autism, which found greater activation in participants with autism than control participants.
This study investigated the neural basis of response inhibition in 12 high-functioning adults with autism and 12 age- and intelligence quotient (IQ)-matched control participants during a simple response inhibition task and an inhibition task involving working memory.
In both inhibition tasks, the participants with autism showed less brain activation than control participants in areas often found to be active in response inhibition tasks, namely the anterior cingulate cortex. In the more demanding inhibition condition, involving working memory, the participants with autism showed more activation than control participants in the premotor areas. In addition to the activation differences, the participants with autism showed lower levels of synchronization between the inhibition network (anterior cingulate gyrus, middle cingulate gyrus, and insula) and the right middle and inferior frontal and right inferior parietal regions.
The results indicate that the inhibition circuitry in the autism group is activated atypically and is less synchronized, leaving inhibition to be accomplished by strategic control rather than automatically. At the behavioral level, there was no difference between the groups.

0 Followers
 · 
169 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging research suggests that physical activity may be an effective non-pharmaceutical intervention approach for childhood developmental disorders. Findings indicate that both single bouts of activity and chronic physical activity associate with improved mental health and classroom performance in children with attention-deficit/hyperactivity disorder and children with autism spectrum disorders. This review describes the research in this area and identifies limitations and challenges to the translation of these findings to promote physical activity in clinical practice and educational policy. © 2014 The Society for Research in Child Development, Inc.
    Monographs of the Society for Research in Child Development 12/2014; 79(4):93-118. DOI:10.1111/mono.12132 · 5.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism is marked by impairments in social reciprocity and communication, along with restricted, repetitive and stereotyped behaviors. Prior studies have separately investigated social processing and executive function in autism, but little is known about the brain mechanisms of cognitive control for both emotional and nonemotional stimuli. We used functional magnetic resonance imaging to identify differences in neurocircuitry between individuals with high functioning autism (HFA) and neurotypical controls during two versions of a go/no-go task: emotional (fear and happy faces) and nonemotional (English letters). During the letter task, HFA participants showed hypoactivation in ventral prefrontal cortex. During the emotion task, happy faces elicited activation in ventral striatum, nucleus accumbens and anterior amygdala in neurotypical, but not HFA, participants. Response inhibition for fear faces compared with happy faces recruited occipitotemporal regions in HFA, but not neurotypical, participants. In a direct contrast of emotional no-go and letter no-go blocks, HFA participants showed hyperactivation in extrastriate cortex and fusiform gyrus. Accuracy for emotional no-go trials was negatively correlated with activation in fusiform gyrus in the HFA group. These results indicate that autism is associated with abnormal processing in socioemotional brain networks, and support the theory that autism is marked by a social motivational deficit. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 03/2015; 60. DOI:10.1016/j.pnpbp.2015.03.001 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in qEEG evaluations of TBI must be interpreted with care. High specificities have been reported in carefully constructed clinical studies in which healthy controls were compared against a carefully selected TBI population. The published literature indicates, however, that similar abnormalities in qEEG measures are observed in other neuropsychiatric disorders. While it may be possible to distinguish a clinical patient from a healthy control participant with this technology, these measures are unlikely to discriminate between, for example, major depressive disorder, bipolar disorder, or TBI. The specificities observed in these clinical studies may well be lost in real world clinical practice. (5) The absence of specificity does not preclude clinical utility. The possibility of use as a longitudinal measure of treatment response remains. However, efficacy as a longitudinal clinical measure does require acceptable test-retest reliability. To date, very few test-retest reliability studies have been published with qEEG data obtained from TBI patients or from healthy controls. This is a particular concern because high variability is a known characteristic of the injured central nervous system.
    Frontiers in Human Neuroscience 02/2015; 9. DOI:10.3389/fnhum.2015.00011 · 2.90 Impact Factor

Full-text (2 Sources)

Download
58 Downloads
Available from
May 31, 2014