Article

Functional and quantitative proteomics using SILAC.

Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Nature Reviews Molecular Cell Biology (Impact Factor: 37.16). 01/2007; 7(12):952-8. DOI: 10.1038/nrm2067
Source: PubMed

ABSTRACT Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and - as a quantitative phosphoproteomics technology - directly uncovers important points in the signalling pathways that control cellular decisions.

0 Bookmarks
 · 
264 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors), this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation.
    International Journal of Molecular Sciences 01/2014; 15(7):11523-11538. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Disruptions in procollagen synthesis, trafficking and secretion by cells occur in multiple connective tissue diseases. Traditionally, these disruptions are studied by pulse-chase labeling with radioisotopes. However, significant DNA damage, excessive accumulation of reactive oxygen species and formation of other free radicals have been well documented in the literature at typical radioisotope concentrations used for pulse-chase experiments. Therefore, it is important to keep in mind that the resulting cell stress response might affect interpretation of the data, particularly with respect to abnormal function of procollagen-producing cells. Here, we describe an alternative method of pulse-chase procollagen labeling with azidohomoalanine, a noncanonical amino acid that replaces methionine in newly synthesized protein chains and can be detected via highly selective click chemistry reactions. At least in fibroblast culture, this approach is more efficient than traditional radioisotopes and has fewer, if any unintended effects on cell function. To illustrate its applications, we demonstrate delayed procollagen folding and secretion by cells from an osteogenesis imperfecta patient with a Cys substitution for Gly766 in the triple helical region of the α1(I) chain of type I procollagen.
    Connective tissue research. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects.
    Radiology and Oncology 06/2014; 48(2):142-54. · 1.60 Impact Factor

Full-text

Download
11 Downloads
Available from