Article

Functional and quantitative proteomics using SILAC.

Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Nature Reviews Molecular Cell Biology (Impact Factor: 36.46). 01/2007; 7(12):952-8. DOI: 10.1038/nrm2067
Source: PubMed

ABSTRACT Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and - as a quantitative phosphoproteomics technology - directly uncovers important points in the signalling pathways that control cellular decisions.

0 Bookmarks
 · 
272 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to maintain daily cycles, the circadian clock must tightly regulate the rhythms of thousands of mRNAs and proteins with the correct period, phase, and amplitude to ultimately drive the wide range of rhythmic biological processes. Recent genomic approaches have revolutionized our view of circadian gene expression and highlighted the importance of post-transcriptional regulation in driving mRNA rhythmicity. Even after transcripts are made from DNA, subsequent processing and regulatory steps determine when, where, and how much protein will be generated. These post-transcriptional regulatory mechanisms can add flexibility to overall gene expression and alter protein levels rapidly without requiring transcript synthesis, and are therefore beneficial for cells; however, the extent to which circadian post-transcriptional mechanisms contribute to rhythmic profiles throughout the genome and the mechanisms involved have not been fully elucidated. In this review, we will summarize how circadian genomics have revealed new insights into rhythmic post-transcriptional regulation in mammals, and discuss potential implications of such regulation in controlling many circadian-driven physiologies.
    Biochemistry 10/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic adenocarcinoma (PA) is among the most aggressive human tumors with an overall 5-year survival rate of <5% and available treatments are only minimal effective. WNT/β-catenin signaling has been identified as one of 12 core signaling pathways that are commonly mutated in PA. To obtain more insight into the role of WNT/β-catenin signaling in PA we established human PA cell lines that are deficient of the central canonical WNT signaling protein β-catenin by using zinc-finger nuclease (ZFN) mediated targeted genomic disruption in the β-catenin gene (CTNNB1). Five individual CTNNB1 gene disrupted clones (BxPC3ΔCTNNB1) were established from a BxPC-3 founder cell line. Despite the complete absence of β-catenin, all clones displayed normal cell cycle distribution profiles, overall normal morphology and no elevated levels of apoptosis although increased doubling times were observed in three of the five BxPC3ΔCTNNB1 clones. This confirms that WNT/β-catenin signaling is not mandatory for long term cell growth and survival in BxPC-3 cells. Despite a normal morphology of the β-catenin deficient cell lines, quantitative proteomic analysis combined with pathway analysis showed a significant down regulation of proteins implied in cell adhesion combined with an up-regulation of plakoglobin. Treatment of BxPC3ΔCTNNB1 cell lines with siRNA for plakoglobin induced morphological changes compatible with a deficiency in the formation of functional cell to cell contacts. In addition, a re-localization of E-cadherin from membranous in untreated to accumulation in cytoplasmatic puncta in plakoglobin siRNA treated BxPC3ΔCTNNB1 cells was observed. In conclusion we describe in β-catenin deficient BxPC-3 cells a rescue function for plakoglobin on cell to cell contacts and maintaining the localization of E-cadherin at the cellular surface, but not on canonical WNT signaling as measured by TFC/LEF mediated transcription.
    PLoS ONE 12/2014; 9(12):e115496. · 3.53 Impact Factor
  • Source
    Jia-Xuan Qiu, Zhi-Wei Zhou, Zhi-Xu He, Ruan Jin Zhao, Xueji Zhang, Lun Yang, Shu-Feng Zhou, Zong-Fu Mao
    [Show abstract] [Hide abstract]
    ABSTRACT: Plumbagin (PLB) has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC). The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT), and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and functional analyses revealing the networks of signaling pathways and differential proteomic responses to PLB treatment in prostate cancer cells. Quantitative proteomic analysis using SILAC represents an efficient and highly sensitive approach to identify the target networks of anticancer drugs like PLB, and the data may be used to discriminate the molecular and clinical subtypes, and to identify new therapeutic targets and biomarkers, for prostate cancer. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for prostate cancer.
    Drug Design, Development and Therapy 01/2015; 9:349-417. · 3.03 Impact Factor

Preview

Download
11 Downloads
Available from