Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E et al.. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16: 1465-1479

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
Genome Research (Impact Factor: 14.63). 01/2007; 16(12):1465-79. DOI: 10.1101/gr.5460106
Source: PubMed


Representational Oligonucleotide Microarray Analysis (ROMA) detects genomic amplifications and deletions with boundaries defined at a resolution of approximately 50 kb. We have used this technique to examine 243 breast tumors from two separate studies for which detailed clinical data were available. The very high resolution of this technology has enabled us to identify three characteristic patterns of genomic copy number variation in diploid tumors and to measure correlations with patient survival. One of these patterns is characterized by multiple closely spaced amplicons, or "firestorms," limited to single chromosome arms. These multiple amplifications are highly correlated with aggressive disease and poor survival even when the rest of the genome is relatively quiet. Analysis of a selected subset of clinical material suggests that a simple genomic calculation, based on the number and proximity of genomic alterations, correlates with life-table estimates of the probability of overall survival in patients with primary breast cancer. Based on this sample, we generate the working hypothesis that copy number profiling might provide information useful in making clinical decisions, especially regarding the use or not of systemic therapies (hormonal therapy, chemotherapy), in the management of operable primary breast cancer with ostensibly good prognosis, for example, small, node-negative, hormone-receptor-positive diploid cases.

Download full-text


Available from: Alexander Krasnitz,

Click to see the full-text of:

Article: Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E et al.. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16: 1465-1479

874.48 KB

See full-text
  • Source
    • "Recent studies have sought to develop molecular classifications , but these do not significantly improve prognostic performance (Cancer Genome Atlas Research Network, 2011; Etemadmoghadam et al., 2009). Genomic rearrangements in breast cancer have distinct patterns , possibly reflecting different mechanisms of genomic instability (Hicks et al., 2006). Analysis of somatically acquired copy number alterations (CNA) has identified distinct types of structural changes (e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Complex focal chromosomal rearrangements in cancer genomes, also called “firestorms”, can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER−) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p < 0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62–2.32) for BCSS, and of 1.49 (95%CI, 1.30–1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23–1.99) for ER+ and 1.55 (95%CI, 1.11–2.18) for ER− disease. None of the expression-based predictors were prognostic in the ER− subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1–1.7) for PFS and 1.3 (95%CI, 1.1–1.6) for OS. This study validates CAAI as an independent predictor of survival in both ER+ and ER− breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer.
    Molecular Oncology 12/2014; 9(1). DOI:10.1016/j.molonc.2014.07.019 · 5.33 Impact Factor
  • Source
    • "Data from aCGH of both the WZ and the MicMa cohort were imported into S-PLUS and normalized and segmented as described by Hicks et al. (2006). The processed data were then further analyzed for breakpoints using Matlab (Mathworks). "
    [Show abstract] [Hide abstract]
    ABSTRACT: In situ detection of genomic alterations in cancer provides information at the single cell level, making it possible to investigate genomic changes in cells in a tissue context. Such topological information is important when studying intratumor heterogeneity as well as alterations related to different steps in tumor progression. We developed a quantitative multigene fluorescence in situ hybridization (QM FISH) method to detect multiple genomic regions in single cells in complex tissues. As a “proof of principle” we applied the method to breast cancer samples to identify partners in whole arm (WA) translocations. WA gain of chromosome arm 1q and loss of chromosome arm 16q are among the most frequent genomic events in breast cancer. By designing five specific FISH probes based on breakpoint information from comparative genomic hybridization array (aCGH) profiles, we visualized chromosomal translocations in clinical samples at the single cell level. By analyzing aCGH data from 295 patients with breast carcinoma with known molecular subtype, we found concurrent WA gain of 1q and loss of 16q to be more frequent in luminal A tumors compared to other molecular subtypes. QM FISH applied to a subset of samples (n = 26) identified a derivative chromosome der(1;16)(q10;p10), a result of a centromere-close translocation between chromosome arms 1q and 16p. In addition, we observed that the distribution of cells with the translocation varied from sample to sample, some had a homogenous cell population while others displayed intratumor heterogeneity with cell-to-cell variation. Finally, for one tumor with both preinvasive and invasive components, the fraction of cells with translocation was lower and more heterogeneous in the preinvasive tumor cells compared to the cells in the invasive component. © 2014 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 12/2014; 54(4). DOI:10.1002/gcc.22237 · 4.04 Impact Factor
  • Source
    • "The spectrum of point mutations and small insertions/deletions in breast cancers has been extensively studied and revealed a limited number of genes that are frequently mutated, such as TP53, PIK3CA, KRAS, and a larger number of rare mutations with many of unclear importance (Banerji et al. 2012; The Cancer Genome Atlas Network 2012; Shah et al. 2012; Stephens et al. 2012). The frequency of copy number gain and loss and their relationship with patient prognosis have also been examined in breast cancer (Chin et al. 2006; Hicks et al. 2006; Beroukhim et al. 2010; J€ onsson et al. 2010; Russnes et al. 2010; Staaf et al. 2010; Curtis et al. 2012). Although in earlier studies the major focus was to find specific driver oncogenes in amplicons and tumor suppressor genes in common regions of loss (primarily using loss of heterozygosity mapping), progressively there emerged an understanding that more than one driver oncogene may be present in any amplicon. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer.
    Genome Research 09/2014; 24(10). DOI:10.1101/gr.164871.113 · 14.63 Impact Factor
Show more