Article

WW domain-containing oxidoreductase: a candidate tumor suppressor.

Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan 70101, Republic of China.
Trends in Molecular Medicine (Impact Factor: 10.11). 02/2007; 13(1):12-22. DOI: 10.1016/j.molmed.2006.11.006
Source: PubMed

ABSTRACT Common fragile site gene WWOX encodes a candidate tumor suppressor WW domain-containing oxidoreductase. Alteration of this gene, along with dramatic downregulation of WWOX protein, is shown in the majority of invasive cancer cells. Ectopic WWOX exhibits proapoptotic and tumor inhibitory functions in vitro and in vivo, probably interacting with growth regulatory proteins p53, p73 and others. Hyaluronidases regulate WWOX expression, increase cancer invasiveness and seem to be involved in the development of hormone-independent growth of invasive cancer cells. Estrogen and androgen stimulate phosphorylation and nuclear translocation of WWOX, although binding of WWOX to these sex hormones is unknown. We propose that suppression of WWOX expression by overexpressed hyaluronidases might contribute in part to the development of hormone independence in invasive cancer.

0 Bookmarks
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New mouse models with specific drivers of genetic alterations are needed for preclinical studies. Herein, we created and characterized at the genetic level a new syngeneic model for lung cancer and metastasis in Balb-c mice. Tumor cell lines were obtained from a silica-mediated airway chronic inflammation that promotes tumorigenesis when combined with low doses of N-nitrosodimethylamine, a tobacco smoke carcinogen. Orthotopic transplantation of these cells induced lung adenocarcinomas, and their intracardiac injection led to prominent colonization of various organs (bone, lung, liver and brain). Driver gene alterations included a mutation in the codon 12 of KRAS (G-A transition), accompanied by a homozygous deletion of the WW domain-containing oxidoreductase (WWOX) gene. The mutant form of WWOX lacked exons 5-8 and displayed reduced protein expression level and activity. WWOX gene restoration decreased the in vitro and in vivo tumorigenicity, confirming the tumor suppressor function of this gene in this particular model. Interestingly, we found that cells displayed remarkable sphere formation ability with expression of specific lung cancer stem cell markers. Study of non-small-cell lung cancer patient cohorts demonstrated a deletion of WWOX in 30% of cases, with significant reduction in protein levels as compared to normal tissues. Overall, our new syngeneic mouse model provides a most valuable tool to study lung cancer metastasis in balb-c mice background and highlights the importance of WWOX deletion in lung carcinogenesis.
    International Journal of Cancer 10/2013; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WWOX, a gene that spans the second most common chromosomal fragile site (FRA16D), often exhibits homozygous deletions and translocation breakpoints under multiple cellular stresses induced by extrinsic or intrinsic factors, such as hypoxia, UV, and DNA damage regents. Loss of WWOX is closely related to genomic instability, tumorigenesis, cancer progression and therapy resistance. WWOX heterozygous knockout mice show an increased incidence of spontaneous or induced tumors. WWOX can interact via the WW domain with proteins that possess proline PPxY motifs and is involved in a variety of cellular processes. Accumulating evidence has shown that WWOX that contains a short-chain dehydrogenase/reductase (SDR) domain is involved in steroid metabolism and bone development. Reduced or lost expression of WWOX will lead to development of metabolic disease. In this review, we focus on the roles of WWOX in metabolic disorders and tumors.
    International journal of biological sciences 01/2014; 10(2):142-148. · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis. © 2014 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 12/2014; · 2.23 Impact Factor

Full-text

Download
93 Downloads
Available from
May 23, 2014