Macrophage inflammatory protein 3 alpha deficiency in atopic dermatitis skin and role in innate immune response to vaccinia virus

Inje University, Kŭmhae, Gyeongsangnam-do, South Korea
Journal of Allergy and Clinical Immunology (Impact Factor: 11.25). 02/2007; 119(2):457-63. DOI: 10.1016/j.jaci.2006.10.005
Source: PubMed

ABSTRACT Patients with atopic dermatitis (AD) are prone to disseminated viral skin infections and therefore are not vaccinated against smallpox because of potential complications. Macrophage inflammatory protein 3alpha (MIP-3alpha) is a C-C chemokine expressed by keratinocytes that exhibits antimicrobial activity against bacteria and fungi; however, its role in antiviral innate immunity is unknown.
Evaluate the level of MIP-3alpha in AD skin and its role in the innate immune response to vaccinia virus (VV).
Macrophage inflammatory protein 3alpha levels were evaluated using real-time RT-PCR, immunodot-blot, and immunohistochemistry. The antiviral activity of MIP-3alpha was determined using a standard viral plaque assay.
Macrophage inflammatory protein 3alpha gene expression was significantly (P < .01) decreased in AD skin (0.21 +/- 0.05 ng MIP-3alpha/ng glyceraldehyde-3-phosphate dehydrogenase) compared with psoriasis skin (0.67 +/- 0.13). This was confirmed at the protein level using immunohistochemistry. We further demonstrate that T(H)2 cytokines downregulate MIP-3alpha expression. The importance of MIP-3alpha in the innate immune response against VV was established by first demonstrating that MIP-3alpha exhibits activity against VV. Second, VV replication was significantly increased (P < .01) in keratinocytes treated with an antibody to neutralize MIP-3alpha.
The current study demonstrates that MIP-3alpha exhibits antiviral activity against VV and demonstrates the importance of MIP-3alpha in the innate immune response against VV. In addition, AD skin is deficient in MIP-3alpha, in part because of the overexpression of T(H)2 cytokines in AD skin.
MIP-3alpha deficiency in AD skin contributes to patients' increased propensity toward eczema vaccinatum. Increasing MIP-3alpha or neutralizing T(H)2 cytokines could prevent adverse reactions in patients with AD after smallpox vaccination.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus (SA) has peculiar abilities to colonize the skin in atopic dermatitis (AD) patients. We sought to determine the colonization rates of SA in acute and chronic skin lesions of AD patients, to find any difference in colonization rates according to age and to find the influences of total immunoglobulin E (IgE) and eosinophil counts to the colonization of SA. We evaluated the total IgE level and eosinophil counts, and cultured SA from the skin lesions of 687 AD patients (131 acute and 556 chronic skin lesions) and 247 control urticaria patients (July 2009 to November 2010; Samsung Medical Center Dermatology Clinic, Seoul, Korea). The SA colonization rates were 74%, 38% and 3% in acute, chronic skin lesions and control skin, respectively, and they were increased with age in AD patients. The colonization rate in chronic skin lesions was higher in the high IgE/eosinophilia groups as compared to the normal IgE/eosinophil groups. The SA colonization rate was higher in AD patients and especially in acute lesions, and had a tendency to increase with age. As the colonization rates were only higher in the high IgE/eosinophilia groups of chronic skin lesions, we suggested that SA may invade the skin through barrier defects in acute skin lesions, but the colonization in chronic lesions may be orchestrated through many different factors.
    Annals of Dermatology 11/2013; 25(4):410-6. DOI:10.5021/ad.2013.25.4.410 · 0.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with altered skin immunity, such as individuals with atopic dermatitis (AD), can have a life-threatening disruption of the epidermis known as eczema vaccinatum (EV) after vaccinia virus (VV) infection of the skin. Here, we sought to better understand the mechanism(s) by which VV associates with keratinocytes. The class A scavenger receptor known as MARCO (macrophage receptor with collagenous structure) is expressed on human and mouse keratinocytes and found to be abundantly expressed in the skin of patients with AD. VV bound directly to MARCO, and overexpression of MARCO increased susceptibility to VV infection. Furthermore, ligands with affinity for MARCO, or excess soluble MARCO, competitively inhibited VV infection. These findings indicate that MARCO promotes VV infection and highlights potential new therapeutic strategies for prevention of VV infection in the skin.Journal of Investigative Dermatology accepted article preview online, 4 August 2014; doi:10.1038/jid.2014.330.
    Journal of Investigative Dermatology 08/2014; 135(1). DOI:10.1038/jid.2014.330 · 6.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molluscum contagiosum (MC) may persist for many weeks, evading host immunity. We studied the mechanism of immune escape phenomenon in MC, and the possible inducer of apoptosis. Using tissue samples of MC, we examined the numbers of epidermal Langerhans cells (LC), the expression levels of macrophage inflammatory protein-3α (MIP-3α) and thymic stromal lymphopoietin (TSLP), and the apoptotic signals. After molluscum contagiosum virus (MCV) genotyping, we studied the expression of MCV-encoded MC148 mRNA and MC159 mRNA which correspond to viral antagonist for CCR8 and viral Fas-linked interleukin (IL)-1β converting enzyme (FLICE)-like inhibitor protein (vFLIP), respectively. The nutlin-3-induced apoptosis in MC was observed ex vivo. The numbers of CD1a+ or Langerin+ epidermal LC and the expression levels of MIP-3α were markedly decreased in MC. The expression of TSLP was enhanced in the lesional epidermis of atopic dermatitis and human papillomavirus-induced warts, whereas the expression was observed locally in MC. All 14 MC samples examined harbored MCV type 1. The MC148 mRNA was detected in all 14 samples and the MC159 mRNA was detected in 13 samples. Apoptotic cells were absent or at a background level in the living layers of MC, but their numbers were increased in the molluscum bodies by overnight incubation with 5 μmol/L nutlin-3 in culture medium. In conclusion, molluscum bodies are protected from host immune responses and apoptotic signals by being surrounded by LC-depleted epidermal walls and viral immunosuppressive molecules, but could be eradicated by reagents inducing p53-dependent apoptosis.
    The Journal of Dermatology 12/2014; 41(12). DOI:10.1111/1346-8138.12695 · 2.35 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014