Article

Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients.

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA.
The Journal of Immunology (Impact Factor: 5.36). 01/2007; 177(12):8822-34. DOI: 10.4049/jimmunol.177.12.8822
Source: PubMed

ABSTRACT Recombinant immunotoxins composed of an Ab Fv fragment joined to a truncated portion of Pseudomonas exotoxin A (termed PE38) have been evaluated in clinical trials for the treatment of various human cancers. Immunotoxin therapy is very effective in hairy cell leukemia and also has activity in other hemological malignancies; however, a neutralizing Ab response to PE38 in patients with solid tumors prevents repeated treatments to maximize the benefit. In this study, we analyze the murine Ab response as a model to study the B cell epitopes associated with PE38. Sixty distinct mAbs to PE38 were characterized. Mutual competitive binding of the mAbs indicated the presence of 7 major epitope groups and 13 subgroups. The competition pattern indicated that the epitopes are discrete and could not be reproduced using a computer simulation program that created epitopes out of random surface residues on PE38. Using sera from immunotoxin-treated patients, the formation of human Abs to each of the topographical epitopes was demonstrated. One epitope subgroup, E1a, was identified as the principal neutralizing epitope. The location of each epitope on PE38 was determined by preparing 41 mutants of PE38 in which bulky surface residues were mutated to either alanine or glycine. All 7 major epitope groups and 9 of 13 epitope subgroups were identified by 14 different mutants and these retained high cytotoxic activity. Our results indicate that a relatively small number of discrete immunogenic sites are associated with PE38, most of which can be eliminated by point mutations.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like Designed Ankyrin Repeat Proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in normal tissue toxicity. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA"), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA", simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA" was much better tolerated than Ec1-ETA", despite a longer circulation half-life and an almost 10-fold increased AUC. Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.
    Bioconjugate Chemistry 10/2014; · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD133 expression enriches for tumor-initiating cells and is a negative prognostic factor in numerous cancers. We previously developed an immunotoxin against CD133 by fusing a gene fragment encoding the scFv portion of an anti-CD133 antibody to a gene fragment encoding deimmunized PE38KDEL. The resulting fusion protein, dCD133KDEL, demonstrated potent antitumor activity following intratumoral delivery into head neck cell carcinoma xenografts. However, the efficacy against other tumors and the tolerability of systemic administration remained unclear. The purpose of this study was to evaluate the tolerability and efficacy of dCD133KDEL in a systemic human breast carcinoma model. Time course viability studies showed that dCD133KDEL selectively inhibited MDA-MB-231 ductal breast carcinoma cells that contained a minority CD133+ subpopulation, implicating CD133+ cells as a source for self-renewal within this cell line. Furthermore, systemic administration of dCD133KDEL caused regression or inhibition of tumor growth in mice bearing an intrasplenic MDA-MB-231 tumor challenge as a model for metastatic disease. In the same model, combined therapy with dCD133KDEL and another immunotoxin designed to target the bulk tumor mass was the most effective therapy, supporting the idea that such combination therapies might better address tumor heterogeneity. dCD133KDEL shows promise as a therapeutic agent and as a biologic tool to study cancer stem cells.
    Drug Delivery and Translational Research. 04/2012; 3(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunotoxins are a group of protein-based therapeutics, basically comprising two functional moieties: one is the antibody or antibody Fv fragment that allows the immunotoxin to bind specifically to target cells; another is the plant or bacterial toxin that kills the cells upon internalization. Immunotoxins have several unique features which are superior to conventional chemotherapeutics, including high specificity, extraordinary potency, and no known drug resistance. Development of immunotoxins evolves with time and technology, but significant progress has been achieved in the past 20 years after introduction of recombinant DNA technique and generation of the first single-chain variable fragment of monoclonal antibodies. Since then, more than 1,000 recombinant immunotoxins have been generated against cancer. However, most success in immunotoxin therapy has been achieved against hematological malignancies, several issues persist to be significant barriers for effective therapy of human solid tumors. Further development of immunotoxins will largely focus on the improvement of penetration capability to solid tumor mass and elimination of immunogenicity occurred when given repeatedly to patients. Promising strategies may include construction of recombinant antibody fragments with higher binding affinity and stability, elimination of immunodominant T- and B-cell epitopes of toxins, modification of immunotoxins with macromolecules like poly(ethylene glycol) and liposomes, and generation of immunotoxins with humanized antibody fragments and human endogenous cytotoxic enzymes. In this paper, we briefly reviewed the evolution of immunotoxin development and then discussed the challenges of immunotoxin therapy for human solid tumors and the potential strategies we may seek to overcome the challenges.
    Journal of basic and clinical medicine. 01/2013; 2(2):1-6.

Full-text (2 Sources)

Download
5 Downloads
Available from
Jul 28, 2014