Article

Spatial and seasonal variations of Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere.

Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada.
Environmental Science and Technology (Impact Factor: 5.26). 12/2006; 40(21):6601-7. DOI: 10.1021/es061065q
Source: PubMed

ABSTRACT Weekly high-volume air samples were collected between 2000 and 2003 at six Arctic sites, i.e., Alert, Kinngait, and Little Fox Lake (LFL) in Canada, Point Barrow in Alaska, Valkarkai in Russia, and Zeppelin in Norway. Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were quantified in all samples. Comparison showed that alpha-HCH and HCB were homogeneously distributed in the circumpolar atmosphere and uniform throughout the seasons. However, significantly higher atmospheric concentrations of alpha-HCH and HCB and strongertemperature dependence of alpha-HCH and gamma-HCH were found at LFL in Yukon (YK), which is unique among the sites by virtue of its high altitude and low latitude, resulting in higher precipitation rates and summer temperatures. Strong temperature dependence of alpha- and gamma-HCH at this location suggests that secondary emissions, i.e., re-evaporation from surfaces, were more important at this site than others. It is hypothesized that a higher precipitation rate at LFL facilitated the transfer of alpha-HCH from the atmosphere to surface media when technical HCH was still in use worldwide. On the other hand, higher temperature at LFL enhanced reevaporation to the atmosphere after the global ban of technical HCH. In contrast to alpha-HCH and HCB, larger spatial and seasonal differences were seen for gamma-HCH (a currently used pesticide), which likely reflect the influence of different primary contaminant sources on different Arctic locations. Fugacity ratios suggest a net deposition potential of HCB from air to seawater, whereas seawater/air exchange direction of alpha-HCH varies in the circumpolar environment.

0 Bookmarks
 · 
213 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric concentrations of organochlorine pesticides (OCPs) have been measured for the first time at Station Nord, North-East Greenland, from 2008 to 2010. The data obtained are reported here. Hexachlorobenzene (HCB), endosulfan I and hexachlorocyclohexanes (HCHs) were the predominant compounds detected in the atmosphere, followed by p,p'-DDE and dieldrin. Chlordane isomers and related compounds (trans- and cis-chlordanes, heptachlor and heptachlor epoxide, trans- and cis-nonachlor) were also detected. Atmospheric concentrations of the investigated compounds were correlated with temperature using the Clausius-Clapeyron equation in order to obtain information about their transport properties. The correlation between atmospheric concentrations and temperature was not significant for endosulfan I, γ-HCH and p,p'-DDT, which indicates that direct transport from direct sources is the dominating transport mechanism for these compounds. A significant correlation with temperature was found for all the other studied pesticides and pesticide degradation products, which indicates that re-emission of these compounds from previously contaminated surfaces is an important factor for the observed variation in concentrations. Pesticide concentrations were also correlated with sea ice cover. Concentrations of the compounds that have not been in use for decades correlated with temperature and ice cover, while concentrations of compounds still in use did not correlate with either of these parameters. These observations indicate that processes such as revolatilization from the open sea surface are important mediating factors in the dynamics of anthropogenic persistent pollutants in the Arctic environment under the expected influence of climate change processes.
    Environmental science. Processes & impacts. 12/2013; 15(12):2213-2219.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent organic pollutants (POPs) are organic compounds produced by human activities that are resistant to environmental degradation. They include industrial chemicals, such as polychlorinated biphenyls, and pesticides, such as dichlorodiphenyltrichloroethane. Owing to their persistence in the environment, POPs are transported long distances in the atmosphere, accumulating in regions such as the Arctic, where low temperatures induce their deposition1,2. Here the compounds accumulate in wildlife and humans, putting their health at risk1,3,4. The concentrations of many POPs have decreased in Arctic air over the past few decades owing to restrictions on their production and use. As the climate warms, however, POPs deposited in sinks such as water and ice are expected to revolatilize into the atmosphere5, and there is evidence that this process may have already begun for volatile compounds6. Here we show that many POPs, including those with lower volatilities, are being remobilized into the air from repositories in the Arctic region as a result of sea-ice retreat and rising temperatures. We analysed records of the concentrations of POPs in Arctic air since the early 1990s and compared the results with model simulations of the effect of climate change on their atmospheric abundances. Our results indicate that a wide range of POPs have been remobilized into the Arctic atmosphere over the past two decades as a result of climate change, confirming that Arctic warming could undermine global efforts to reduce environmental and human exposure to these toxic chemicals.
    Nature Climate Change 08/2011; 1(1):255. · 14.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies have been devoted to the transport and accumulation of persistent organic pollutants (POPs) in mountain environments. The Himalayas have the widest altitude gradient of any mountain range, but few studies examining the environmental behavior of POPs have been performed in the Himalayas. In this study, air, soil, and leaf samples were collected along a transect on the southern slope of the Himalayas, Nepal (altitude: 135-5100 m). Local emission occurred in the lowlands, and POPs were transported by uplift along the slope. During the atmospheric transport, the HCB proportion increased from the lowlands (20%) to high elevation (>50%), whereas the proportions of DDTs decreased. The largest residue of soil POPs appeared at an altitude of approximately 2500 m, and may be related to absorption by vegetation and precipitation. The net deposition tendencies at the air-soil surface indicated that the Himalayas may be a 'sink' for DDTs and PCBs.
    Environmental pollution (Barking, Essex : 1987). 05/2014; 192C:44-51.

Full-text

View
50 Downloads
Available from
Jun 5, 2014