Article

In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC.

L'Oréal Recherche, France.
Biopolymers (Impact Factor: 2.29). 04/2007; 85(4):359-69. DOI: 10.1002/bip.20644
Source: PubMed

ABSTRACT The hydration capacities of a biomimetic polymer, 2-methacryloyloxethylphosphorylcholine polymer (pMPC), alone and microencapsulated, in association with another well known hydrating polymer, Hyaluronic acid, were investigated in vitro on skin models and in vivo on volunteers by using confocal Raman microspectroscopy. The hydration impact and the relative water content in the Stratum corneum were calculated from the Raman spectra using the OH (water)/CH3 (protein) ratio. Moreover, the follow-up of the presence of pMPC through the Stratum corneum was possible with confocal Raman microspectroscopy, using a characteristic vibration of pMPC, different from that of the encapsulating material. From our in vitro measurements, the improved hydration of the Stratum corneum was confirmed by the use of the encapsulated form of pMPC, which was higher when combined with Hyaluronic acid. On the basis of these in vitro findings, we validated this trend in in vivo measurements on 26 volunteers, and found a good correlation with the in vitro results. Mechanical and ultrastructural studies have been carried out to demonstrate the positive effects of the pMPC on the Stratum corneum function, namely the interaction with lamellar lipids and the plasticizing effects, which are both supposed to spell out the moisturizing effect. This study demonstrates the efficiency of a original hydrating agent, pMPC, entrapped with Hyaluronic acid in a new type of microcapsules by the use of a novel tool developed for both in vitro and in vivo approaches. This indicates a new step to evaluate and improve new moisturizers in response to the cosmetics or dermatologic demands.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skin dryness is an omnipresent symptom in various types of skin disorders. Thereby, a large panel of skin care products is developed for therapeutic purposes. However, there is still a lack of non-invasive methods to determine the mechanisms of action of moisturizers at the molecular level. In the present study, confocal Raman spectroscopy coupled to classical least square analyses and ATR-FTIR were used to investigate the effect of different molecules on the stratum corneum (SC) hydration degree and barrier state. First, hygroscopic property was determined by analyzing samples at 90% RH; secondly, the water barrier function was evaluated after the dehydration process (4% RH). The molecules penetration kinetics across SC were also studied for 2 h. Using the present approach, glycerin and propylene glycol were found to be humectants; lanoline showed occlusive action, lactic acid has both humectant and barrier enhancer properties, and ethylhexyl palmitate and caprylic/capric acid triglyceride seemed to be emollients. These observations are in accordance with literature. The present method non-invasively characterizes the mechanism of action of tested molecules. This may improve knowledge of new molecules' structure-activity relationship and help make an effective therapeutic concept dealing with the various skin dysfunctions.
    Skin Research and Technology 11/2013; 20(3). DOI:10.1111/srt.12117 · 1.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The skin aging process is mainly accelerated by external agents such as sunlight, air humidity and surfactants action. Changes in protein structures and hydration during the aging process are responsible for skin morphological variations. In this work the human skin was investigated by in vivo Raman spectroscopy before and after the topical applications of a cosmetic on 17 healthy volunteers (age 60 to 75). In vivo Raman spectra of the skin were obtained with a Spectrometer SpectraPro- 2500i (Pi-Acton), CCD detector and a 785 nm laser excitation source, collected at the beginning of experiment without cream (T0), after 30 (T30) and 60 (T60) days using the product. The primary changes occurred in the following spectral regions: 935 cm-1 (nuCC), 1060 cm-1 (lipids), 1174 to 1201 cm-1 (tryptofan, phenylalanine and tyrosine), 1302 cm-1 (phospholipids), 1520 to 1580 cm-1 (C=C) and 1650 cm-1 (amide I). These findings indicate that skin positive effects were enhanced by a continuous cream application. Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Abstract Text Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
    Proceedings of SPIE - The International Society for Optical Engineering 02/2010; DOI:10.1117/12.841209 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.
    The Analyst 08/2013; DOI:10.1039/c3an00604b · 3.91 Impact Factor