Article

The human T cell response to melanoma antigens.

Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Lausanne, Switzerland.
Advances in Immunology (Impact Factor: 5.53). 02/2006; 92:187-224. DOI: 10.1016/S0065-2776(06)92005-7
Source: PubMed

ABSTRACT The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L(-/-) CD8(+) T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L(-/-) CD8(+) T cells were functionally indistinguishable from CD62L(+/+) CD8(+) T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8(+) T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT(-/-) animals), CD8(+) T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8(+) T cells.
    Immunologic Research 11/2013; 57(1-3). DOI:10.1007/s12026-013-8456-1 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tumor cells killed by radiation therapy (RT) are a potentially good source of antigens for dendritic cell (DC) uptake and presentation to T-cells. RT upregulates cell death receptors such as Fas/CD95 and MHC-I, induces the expression of co-stimulatory molecules on tumor cells, and promotes production of pro-inflammatory cytokines. High-dose interleukin-2 (HD-IL-2) bolus has been shown to obtain objective response rates ranging from 15% to 17% in patients with metastatic melanoma or renal cell carcinoma (RCC), with 6% to 8% of cases experiencing a durable complete response. However, HD-IL-2 is also associated with severe side-effects; if it is to remain a component of the curative treatment strategy in patients with metastatic melanoma or RCC, its therapeutic efficacy must be improved and patients who are most likely to benefit from treatment must be identified a priori. We designed a clinical study combining immunomodulating RT and HD-IL-2 to evaluate their clinical and immunological efficacy and to explore the predictive and prognostic value of 1) tumor-specific immune response and 2) serum levels of proangiogenic cytokines.Methods/designThe primary endpoint of this proof-of-principle phase II study is immune response. Secondary endpoints are the identification of biomarkers potentially predictive of response, toxicity, response rate and overall survival. Three daily doses of booster radiotherapy (XRT) at 6¿12 Gy will be administered to at least one metastatic field on days ¿3 to ¿1 before the first and third cycle. Treatment with IL-2 (dose 18 MIU/m2/day by continuous IV infusion for 72 hours) will start on day +1 and will be repeated every 3 weeks for up to 4 cycles and then every 4 weeks for a further 2 cycles. Immune response against tumor antigens expressed by melanoma and/or RCC will be evaluated during treatment. Circulating immune effectors and regulators, e.g. cytotoxic T lymphocytes and regulatory T cells, as well as serum levels of proangiogenic/proinflammatory cytokines will also be quantified.DiscussionThis study aims to evaluate the potential immunological synergism between HD-IL-2 and XRT, and to identify biomarkers that are predictive of response to IL-2 in order to spare potentially non responding patients from toxicity.Trial registrationEudraCT no. 2012-001786-32.
    Journal of Translational Medicine 09/2014; 12(1):262. DOI:10.1186/s12967-014-0262-6 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cells play an important role in the immune response and are activated in response to the presentation of antigens bound to major histocompatibility complex (MHC) molecules participating with the T-cell receptor (TCR). T-cell receptor complexes also contain four CD3 (cluster of differentiation 3) subunits. The TCR-CD3 complex is vital for T-cell development and plays an important role in intervening cell recognition events. Since microRNAs (miRNAs) are highly stable in blood serum, some of which may target CD3 molecules, they could serve as good biomarkers for early cancer detection. The aim of this study was to see whether there is a relationship between cancers and the amount of miRNAs -targeted CD3 molecules. Bioinformatics tools were used in order to predict the miRNA targets for these genes. Subsequently, these highly conserved miRNAs were evaluated to see if they are implicated in various kinds of cancers. Consequently, human disease databases were used. According to the latest research, this study attempted to investigate the possible down- or upregulation of miRNAs cancer patients. We identified miRNAs which target genes producing CD3 subunit molecules. The most conserved miRNAs were identified for the CD3G gene, while CD247 and CD3EAP genes had the least number and there were no conserved miRNA associated with the CD3D gene. Some of these miRNAs were found to be responsible for different cancers, following a certain pattern. It is highly likely that miRNAs affect the CD3 molecules, impairing the immune system, recognizing and destroying cancer tumor; hence, they can be used as suitable biomarkers in distinguishing cancer in the very early stages of its development.
    PLoS ONE 11/2013; 8(11):e78790. DOI:10.1371/journal.pone.0078790 · 3.53 Impact Factor