A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions

Baxter Laboratory in Genetic Pharmacology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5175, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2007; 103(50):19063-8. DOI: 10.1073/pnas.0605218103
Source: PubMed

ABSTRACT The orphan receptor tyrosine kinase ErbB2 is activated by each of the EGFR family members upon ligand binding. However, difficulties monitoring the dynamic interactions of the membrane receptors have hindered the elucidation of the mechanism of ErbB2 activation. We have engineered a system to monitor protein-protein interactions in intact mammalian cells such that different sets of protein interactions can be quantitatively compared. Application of this system to the interactions of the EGFR family showed that ErbB2 interacts stably with the EGFR and ErbB3, but fails to spontaneously homooligomerize. The widely used anti-cancer antibody Herceptin was found to effectively inhibit the interaction of the EGFR and ErbB2 but not to interfere with the interaction of ErbB2-ErbB3. Treatment of cells expressing EGFR and ErbB2 with Herceptin results in increased EGFR homooligomerization in the presence of EGF and a subsequent rapid internalization and down-regulation of the EGFR. In summary, the protein interaction system described here enabled the characterization of ErbB2 interactions within the biological context of the plasma membrane and provides insight into the mechanism of Herceptin action on cells overexpressing ErbB2.

Download full-text


Available from: Tom Wehrman, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herceptin is a monoclonal antibody against HER2, which is a member of the epidermal growth factor receptor (ErbB) family and is overexpressed in many cancers. In this work, we have applied single-molecule force spectroscopy to study the effect of Herceptin on HER2 modulated ligand-receptor interaction for ErbB signaling in living cells. Heregulin beta1 (HRG), the specific ligand of HER3, was used for HER2 activation as HER3 is the preferable dimerization partner of HER2 and HER3/HER2 is the most representative heterodimer found in cancer. Our results demonstrated a more stable binding of HRG to the cells co-expressing HER3 and HER2 than those expressing HER3 alone. Moreover, the binding force of Herceptin and HER2 is as strong as that of HRG and HER3/HER2. With the addition of Herceptin, the binding strength of HRG to the cells co-expressing HER3 and HER2 decreased. The presence of Herceptin changed the dynamic force spectrum of HRG-HER3/HER2 to that similar to HRG-HER3. Therefore, the enhancement in HRG-HER3 binding after recruiting HER2 was inhibited by Herceptin. The method offers a new approach to study the molecular mechanism of Herceptin anti-cancer effect.
    Experimental Cell Research 07/2009; 315(16):2847-55. DOI:10.1016/j.yexcr.2009.05.023 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The year 2007 marks exactly two decades since human epidermal growth factor receptor-2 (HER2) was functionally implicated in the pathogenesis of human breast cancer (Slamon et al., 1987). This finding established the HER2 oncogene hypothesis for the development of some human cancers. An abundance of experimental evidence compiled over the past two decades now solidly supports the HER2 oncogene hypothesis. A direct consequence of this hypothesis was the promise that inhibitors of oncogenic HER2 would be highly effective treatments for HER2-driven cancers. This treatment hypothesis has led to the development and widespread use of anti-HER2 antibodies (trastuzumab) in clinical management resulting in significantly improved clinical antitumor efficacies that have transformed the clinical practice of oncology. In the shadows of this irrefutable clinical success, scientific studies have not yet been able to mechanistically validate that trastuzumab inhibits oncogenic HER2 function and it remains possible that the current clinical advances are a consequence of the oncogene hypothesis, but not a translation of it. These looming scientific uncertainties suggest that the full promise of the treatment hypothesis may not yet have been realized. The coming decade will see a second generation of HER2-targeting agents brought into clinical testing and a renewed attempt to treat HER2-driven cancers through the inactivation of HER2. Here, I review the development of treatments that target HER2 in the context of the HER2 oncogene hypothesis, and where we stand with regards to the clinical translation of the HER2 oncogene hypothesis.
    Oncogene 11/2007; 26(46):6577-92. DOI:10.1038/sj.onc.1210478 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [School of Medicine] Department of Pharmacology Thesis (Ph. D.)--Case Western Reserve University, 2007. Includes bibliographical references. Requires Adobe Acrobat Reader for viewing.