Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

Biomedical Optics Laboratory, Biomedical Engineering Program, University of Houston, Texas 77204-4006, USA.
Applied Optics (Impact Factor: 1.69). 01/2007; 45(36):9238-45. DOI: 10.1364/AO.45.009238
Source: PubMed

ABSTRACT Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A common-path swept-source optical coherence tomography (SS-OCT) is a promising scheme for implementing a high-speed and stable OCT system. We investigate the capability of a common-path SS-OCT system to perform the cross-sectional imaging of valuable documents translated at high speed for the check of its security feature. The influence of transport speeds, up to 2000 mm/s, on the depth resolution and the signal intensity is experimentally evaluated using a SS-OCT system equipped with a swept source at a center wavelength of 1335 nm and with a sweep repetition rate of 50 kHz. The degradation of the measured signal is in good agreement with theory.
    Applied Optics 12/2011; 50(34):H165-70. · 1.69 Impact Factor
  • Source
    07/2011; , ISBN: 978-953-307-489-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a novel application of correlation mapping optical coherence tomography (cmOCT) for sub-surface fingerprint biometric identification. Fingerprint biometrics including automated fingerprint identification systems, are commonly used to recognise the fingerprint, since they constitute simple, effective and valuable physical evidence. Spoofing of biometric fingerprint devices can be easily done because of the limited information obtained from the surface topography. In order to overcome this limitation a potentially more secure source of information is required for biometric identification applications. In this study, we retrieve the microcirculation map of the subsurface fingertip by use of the cmOCT technique. To increase probing depth of the sub surface microcirculation, an optical clearing agent composed of 75% glycerol in aqueous solution was applied topically and kept in contact for 15 min. OCT intensity images were acquired from commercial research grade swept source OCT system (model OCT1300SS, Thorlabs Inc. USA). A 3D OCT scan of the fingertip was acquired over an area of 5x5 mm using 1024x1024 A-scans in approximately 70 s. The resulting volume was then processed using the cmOCT technique with a 7x7 kernel to provide a microcirculation map. We believe these results will demonstrate an enhanced security level over artificial fingertips. To the best of our knowledge, this is the first demonstration of imaging microcirculation map of the subsurface fingertip.
    Proc SPIE 02/2013;


Available from