Article

Synthetic Aperture Fourier Holographic Optical Microscopy

Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA, Australia.
Physical Review Letters (Impact Factor: 7.73). 11/2006; 97(16):168102. DOI: 10.1103/PhysRevLett.97.168102
Source: PubMed

ABSTRACT We report a new synthetic aperture optical microscopy in which high-resolution, wide-field amplitude and phase images are synthesized from a set of Fourier holograms. Each hologram records a region of the complex two-dimensional spatial frequency spectrum of an object, determined by the illumination field's spatial and spectral properties and the collection angle and solid angle. We demonstrate synthetic microscopic imaging in which spatial frequencies that are well outside the modulation transfer function of the collection optical system are recorded while maintaining the long working distance and wide field of view.

2 Followers
 · 
285 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Realizing high resolution across large volumes is challenging for 3D imaging techniques with high-speed acquisition. Here, we describe a new method for 3D intensity and phase recovery from 4D light field measurements, achieving enhanced resolution via Fourier ptychography. Starting from geometric optics light field refocusing, we incorporate phase retrieval and correct diffraction artifacts. Further, we incorporate dark-field images to achieve lateral resolution beyond the diffraction limit of the objective ( 5 × larger NA) and axial resolution better than the depth of field, using a low-magnification objective with a large field of view. Our iterative reconstruction algorithm uses a multislice coherent model to estimate the 3D complex transmittance function of the sample at multiple depths, without any weak or single-scattering approximations. Data are captured by an LED array microscope with computational illumination, which enables rapid scanning of angles for fast acquisition. We demonstrate the method with thick biological samples in a modified commercial microscope, indicating the technique’s versatility for a wide range of applications.
    Optica 01/2015; 2(2):104. DOI:10.1364/OPTICA.2.000104
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wide field-of-view (FOV) and high-resolution imaging requires microscopy modalities to have large space-bandwidth products. Lensfree on-chip microscopy decouples resolution from FOV and can achieve a space-bandwidth product greater than one billion under unit magnification using state-of-the-art opto-electronic sensor chips and pixel super-resolution techniques. However, using vertical illumination, the effective numerical aperture (NA) that can be achieved with an on-chip microscope is limited by a poor signal-to-noise ratio (SNR) at high spatial frequencies and imaging artifacts that arise as a result of the relatively narrow acceptance angles of the sensor's pixels. Here, we report, for the first time, a synthetic aperture-based on-chip microscope in which the illumination angle is scanned across the surface of a dome to increase the effective NA of the reconstructed lensfree image to 1.4, achieving e.g., ~250-nm resolution at 700-nm wavelength under unit magnification. This synthetic aperture approach not only represents the largest NA achieved to date using an on-chip microscope but also enables color imaging of connected tissue samples, such as pathology slides, by achieving robust phase recovery without the need for multi-height scanning or any prior information about the sample. To validate the effectiveness of this synthetic aperture-based, partially coherent, holographic on-chip microscope, we have successfully imaged color-stained cancer tissue slides as well as unstained Papanicolaou smears across a very large FOV of 20.5 mm2. This compact on-chip microscope based on a synthetic aperture approach could be useful for various applications in medicine, physical sciences and engineering that demand high-resolution wide-field imaging.
    Light: Science & Applications 03/2015; 4(3). DOI:10.1038/lsa.2015.34 · 8.48 Impact Factor