Article

Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa.

Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Science (Impact Factor: 31.48). 01/2007; 314(5805):1603-6. DOI: 10.1126/science.1132338
Source: PubMed

ABSTRACT Mounting evidence has revealed pathological interactions between HIV and malaria in dually infected patients, but the public health implications of the interplay have remained unclear. A transient almost one-log elevation in HIV viral load occurs during febrile malaria episodes; in addition, susceptibility to malaria is enhanced in HIV-infected patients. A mathematical model applied to a setting in Kenya with an adult population of roughly 200,000 estimated that, since 1980, the disease interaction may have been responsible for 8,500 excess HIV infections and 980,000 excess malaria episodes. Co-infection might also have facilitated the geographic expansion of malaria in areas where HIV prevalence is high. Hence, transient and repeated increases in HIV viral load resulting from recurrent co-infection with malaria may be an important factor in promoting the spread of HIV in sub-Saharan Africa.

2 Bookmarks
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until quite recently and since the late 19th century, medical microbiology has been based on the assumption that some micro-organisms are pathogens and others are not. This binary view is now strongly criticised and is even becoming untenable. We first provide a historical overview of the changing nature of host-parasite interactions, in which we argue that large-scale sequencing not only shows that identifying the roots of pathogenesis is much more complicated than previously thought, but also forces us to reconsider what a pathogen is. To address the challenge of defining a pathogen in post-genomic science, we present and discuss recent results that embrace the microbial genetic diversity (both within- and between-host) and underline the relevance of microbial ecology and evolution. By analysing and extending earlier work on the concept of pathogen, we propose pathogenicity (or virulence) should be viewed as a dynamical feature of an interaction between a host and microbes.
    Virulence 09/2014; 5(8):1:11. · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Previous studies indicated that Plasmodium infection activates the immune system, including memory CD4+ T cells, which constitute the reservoir of human immunodeficiency virus type-1 (HIV-1). Therefore, we postulated that co-infection with malaria might activate the reservoir of HIV-1. To test this hypothesis, we used a rhesus macaque model of co-infection with malaria and simian immunodeficiency virus (SIV), along with antiretroviral therapy (ART).ResultsOur results showed that Plasmodium infection reduced both the replication-competent virus pool in resting CD4+ T cells and the integrated virus DNA (iDNA) load in peripheral blood mononuclear cells in the monkeys. This reduction might be attributable to malaria-mediated activation and apoptotic induction of memory CD4+ T cells. Further studies indicated that histone acetylation and NF-kappaB (NF-¿B) activation in resting CD4+ T cells may also play an important role in this reduction.Conclusions The findings of this work expand our knowledge of the interaction between these two diseases. As more HIV-1-infected individuals in malaria-endemic areas receive ART, we should explore whether any of the patients co-infected with Plasmodium experience virologic benefits.
    Retrovirology 12/2014; 11(1):112. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this 'priority effect' was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host-multi-parasite interactions as drivers of host-pathogen community structure. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
    Proceedings of the Royal Society B: Biological Sciences 01/2015; 282(1798). · 5.29 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
Jul 23, 2014