Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa.

Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Science (Impact Factor: 31.2). 01/2007; 314(5805):1603-6. DOI:10.1126/science.1132338
Source: PubMed

ABSTRACT Mounting evidence has revealed pathological interactions between HIV and malaria in dually infected patients, but the public health implications of the interplay have remained unclear. A transient almost one-log elevation in HIV viral load occurs during febrile malaria episodes; in addition, susceptibility to malaria is enhanced in HIV-infected patients. A mathematical model applied to a setting in Kenya with an adult population of roughly 200,000 estimated that, since 1980, the disease interaction may have been responsible for 8,500 excess HIV infections and 980,000 excess malaria episodes. Co-infection might also have facilitated the geographic expansion of malaria in areas where HIV prevalence is high. Hence, transient and repeated increases in HIV viral load resulting from recurrent co-infection with malaria may be an important factor in promoting the spread of HIV in sub-Saharan Africa.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Several countries with generalized, high-prevalence HIV epidemics, mostly in sub-Saharan Africa, have experienced rapid declines in transmission. These HIV epidemics, often with rapid onsets, have generally been attributed to a combination of factors related to high-risk sexual behavior. The subsequent declines in these countries began prior to widespread therapy or implementation of any other major biomedical prevention. This change has been construed as evidence of behavior change, often on the basis of mathematical models, but direct evidence for behavior changes that would explain these declines is limited. Here, we look at the structure of current models and argue that the common "fixed risk per sexual contact" assumption favors the conclusion of substantial behavior changes. We argue that this assumption ignores reported non-linearities between exposure and risk. Taking this into account, we propose that some of the decline in HIV transmission may be part of the natural dynamics of the epidemic, and that several factors that have traditionally been ignored by modelers for lack of precise quantitative estimates may well hold the key to understanding epidemiologic trends.
    PLoS Computational Biology 03/2014; 10(3):e1003459. · 4.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Using mathematical modelling, we described the temporal evolution of population HIV-1 viral load in Tanzania throughout the epidemic. Population log10 viral load was found to be stable and not sensitive to epidemic dynamics. However, even modest increases in antiretroviral therapy (ART) coverage were reflected as appreciable reductions in population log10 viral load. As ART coverage expands in sub-Saharan Africa, population log10 viral load will increasingly become a powerful proxy for monitoring ART implementation and HIV incidence trends. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivitives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
    AIDS (London, England) 02/2014; · 4.91 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Abstract Inherited microbial symbionts can modulate host susceptibility to natural enemy attack. A wider range of symbionts influence host population demography without altering individual susceptibility, and it has been suggested that these may modify host disease risk through altering the rate of exposure to natural enemies. We present the first test of this thesis, specifically testing whether male-killing symbionts alter the epidemiology of a sexually transmitted infection (STI) carried by its host. STIs are typically expected to show female-biased epidemics, and we first present a simple model which indicates that male-biased STI epidemics may occur where symbionts create female-biased population sex ratios. We then examined the dynamics of a STI in the ladybird beetle Adalia bipunctata, which is also host to a male-killing bacterium. We present evidence that male-biased epidemics of the STI are observed in natural populations when the male-killer is common. Laboratory experiments did not support a role for differential susceptibility of male and female hosts to the STI, nor a protective role for the symbiont, in creating this bias. We conclude that the range of symbionts likely to alter parasite epidemiology will be much wider than previously envisaged, because it will additionally include those that impact host demography alone.
    The American Naturalist 03/2014; 183(3):E89-E104. · 4.55 Impact Factor


Available from