Article

Bacterial enhancer-binding proteins: unlocking sigma54-dependent gene transcription.

Centre for Structural Biology, Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
Current Opinion in Structural Biology (Impact Factor: 8.74). 03/2007; 17(1):110-6. DOI: 10.1016/j.sbi.2006.11.002
Source: PubMed

ABSTRACT Bacterial transcription relies on the binding of dissociable sigma (sigma) factors to RNA polymerase (RNAP) for promoter specificity. The major variant sigma factor (sigma54) forms a stable closed complex with RNAP bound to DNA that rarely spontaneously isomerises to an open complex. ATP hydrolysis by bacterial enhancer-binding proteins is used to remodel the RNAP-sigma54-DNA closed complex. Recently, a wealth of structural information on bacterial enhancer-binding proteins has enabled unprecedented insights into their mechanism. These data provide a structural basis for nucleotide binding and hydrolysis, oligomerisation and the conversion of ATPase activity into remodelling events within the RNAP-sigma54 closed complex, and represent advances towards a complete understanding of the sigma54-dependent transcription activation mechanism.

0 Bookmarks
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.
    Molecular Cell 07/2006; 22(5):575-85. · 15.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AAA proteins have entered the molecular realm after being known primarily for their wide range of different functions. Structural studies have highlighted the organization of their constituent ATPase domains and indicate that hexamerization in combination with unfoldase activity is a common underlying feature of this ubiquitous protein family.
    Current Opinion in Structural Biology 01/2003; 12(6):746-53. · 8.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using a combination of computer methods for iterative database searches and multiple sequence alignment, we show that protein sequences related to the AAA family of ATPases are far more prevalent than reported previously. Among these are regulatory components of Lon and Clp proteases, proteins involved in DNA replication, recombination, and restriction (including subunits of the origin recognition complex, replication factor C proteins, MCM DNA-licensing factors and the bacterial DnaA, RuvB, and McrB proteins), prokaryotic NtrC-related transcription regulators, the Bacillus sporulation protein SpoVJ, Mg2+, and Co2+ chelatases, the Halobacterium GvpN gas vesicle synthesis protein, dynein motor proteins, TorsinA, and Rubisco activase. Alignment of these sequences, in light of the structures of the clamp loader delta' subunit of Escherichia coli DNA polymerase III and the hexamerization component of N-ethylmaleimide-sensitive fusion protein, provides structural and mechanistic insights into these proteins, collectively designated the AAA+ class. Whole-genome analysis indicates that this class is ancient and has undergone considerable functional divergence prior to the emergence of the major divisions of life. These proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. The hexameric architecture often associated with this class can provide a hole through which DNA or RNA can be thread; this may be important for assembly or remodeling of DNA-protein complexes.
    Genome Research 02/1999; 9(1):27-43. · 14.40 Impact Factor