Article

The type III TGF-beta receptor suppresses breast cancer progression.

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 02/2007; 117(1):206-17. DOI: 10.1172/JCI29293
Source: PubMed

ABSTRACT The TGF-beta signaling pathway has a complex role in regulating mammary carcinogenesis. Here we demonstrate that the type III TGF-beta receptor (TbetaRIII, or betaglycan), a ubiquitously expressed TGF-beta coreceptor, regulated breast cancer progression and metastasis. Most human breast cancers lost TbetaRIII expression, with loss of heterozygosity of the TGFBR3 gene locus correlating with decreased TbetaRIII expression. TbetaRIII expression decreased during breast cancer progression, and low TbetaRIII levels predicted decreased recurrence-free survival in breast cancer patients. Restoring TbetaRIII expression in breast cancer cells dramatically inhibited tumor invasiveness in vitro and tumor invasion, angiogenesis, and metastasis in vivo. TbetaRIII appeared to inhibit tumor invasion by undergoing ectodomain shedding and producing soluble TbetaRIII, which binds and sequesters TGF-beta to decrease TGF-beta signaling and reduce breast cancer cell invasion and tumor-induced angiogenesis. Our results indicate that loss of TbetaRIII through allelic imbalance is a frequent genetic event during human breast cancer development that increases metastatic potential.

0 Followers
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII) mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.
    Neoplasia (New York, N.Y.) 06/2014; 16(6):489–500. DOI:10.1016/j.neo.2014.05.008 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although prolonged genetic pressure has been conjectured to be necessary for the eventual development of tumor immune evasion mechanisms, recent work is demonstrating that early genetic mutations are capable of moonlighting as both intrinsic and extrinsic modulators of the tumor immune microenvironment. The indoleamine 2,3-dioxygenase-1 (IDO) immunoregulatory enzyme is emerging as a key player in tumor-mediated immune tolerance. While loss of the tumor suppressor, BIN-1, and the over-expression of cyclooxygenase-2 have been implicated in intrinsic regulation of IDO, recent findings have demonstrated the loss of TβRIII and the upregulation of Wnt5a by developing cancers to play a role in the extrinsic control of IDO activity by local dendritic cell populations residing within tumor and tumor-draining lymph node tissues. Together, these genetic changes are capable of modulating paracrine signaling pathways in the early stages of carcinogenesis to establish a site of immune privilege by promoting the differentiation and activation of local regulatory T cells. Additional investigation of these immune evasion pathways promises to provide opportunities for the development of novel strategies to synergistically enhance the efficacy of the evolving class of T cell-targeted "checkpoint" inhibitors.
    Frontiers in Immunology 10/2014; 5:438. DOI:10.3389/fimmu.2014.00438.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Invasive breast carcinomas are heterogeneous and exhibit distinct molecular features and biological behavior. Understanding the underlying molecular events that promote breast cancer progression is necessary to improve treatment and prognostication. TGF-β receptor III (TBR3) is a member of the TGF-β signaling pathway, with functions in cell proliferation and migration in malignancies, including breast cancer. Recent studies propose that TBR3 may function as a tumor suppressor and that its loss may correlate with disease progression. However, there are limited data on the expression of TBR3 in breast cancer in relationship to tumor type, hormonal receptor status and HER-2/neu, and patient outcome. In this study, we investigated the expression of TBR3 in a cohort of 205 primary invasive breast carcinomas in tissue microarrays (TMAs), with comprehensive clinical, pathological and follow- up information. Sections were stained for TBR3 and evaluated for intensity of reactivity based on a 4-tiered scoring system (1 to 4; TBR3 low = scores 1-2; TBR3 high = scores 3-4). Of the 205 invasive carcinomas, 123 were luminal type (95 type A, 28 type B), 8 were HER-2 type, and 62 were triple negative (TN). TBR3 was high in 112 (55 %) and low in 93 (45 %) cases. Low TBR3 was associated with higher histological grade and worse disease free and overall survival, all features of biologically aggressive breast carcinomas. TBR3 was significantly associated with the subtype of breast cancer, as low TBR3 was detected in 95 % of TN compared to 22 % of luminal tumors (p < 0.0001). We discovered a significant association between low TBR3 protein expression, TN breast cancer phenotype, and disease progression. These data suggest that TBR3 loss might be linked to the development of TN breast cancers and pave the way to investigating whether restoring TBR3 function may be a therapeutic strategy against TN breast carcinomas.
    Journal of Cell Communication and Signaling 08/2014; 8(3). DOI:10.1007/s12079-014-0240-z