Article

IL-10 inhibits endothelium-dependent T cell costimulation by up-regulation of ILT3/4 in human vascular endothelial cells

Department of Cardiology, University Hospital, University of Heidelberg, Heidelberg, Germany.
European Journal of Immunology (Impact Factor: 4.52). 02/2007; 37(1):177-92. DOI: 10.1002/eji.200636498
Source: PubMed

ABSTRACT Effects of IL-10 on endothelium-dependent T cell activation have not been investigated in detail. We confirm expression of the IL-10 receptor and effective signaling via STAT-3 in human umbilical vein endothelial cells (HUVEC). In CD4 T cell cocultures with HUVEC, pretreatment of endothelial cells with IL-10 resulted in significant dose-dependent inhibition of CD4 T cell proliferation, which also occurred when IL-10 was removed after pretreatment before starting cocultures. Th1/Th2 polarization of proliferated T cells, endothelial nitric oxide (NO), or IL-12 production were unchanged. However, IL-10 stimulation resulted in up-regulation of SOCS-3, a negative regulator of cytokine secretion, and induction of the inhibitory surface molecules immunoglobulin-like transcript 3 and 4 (ILT3/ILT4) in EC, potentially involving glucocorticoid-induced leucine zipper (GILZ). Addition of blocking antibodies against ILT3/ILT4 to EC/T cell cocultures resulted in nearly complete reestablishment of T cell proliferation. In contrast, addition of soluble ILT3 or overexpression of ILT3 in cocultures significantly reduced T cell proliferation. No induction of foxp3+ regulatory T cells was seen. In conclusion, the T cell costimulatory potential of human EC is markedly suppressed by IL-10 due to up-regulation of ILT3/ILT4, obviously not involving generation of Treg. This identifies a novel action of IL-10 in EC and a potential therapeutical target for local immunomodulation.

0 Followers
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-10 (IL-10) activates a diverse array of functional responses in mononuclear phagocytes. Functional IL-10 receptor (IL-10R) complexes are tetramers consisting of two IL-10R1 polypeptide chains and two IL-10R2 chains. Binding of IL-10 to the extracellular domain of IL-10R1 activates phosphorylation of the receptor-associated Janus tyrosine kinases, JAK1 and Tyk2. These kinases then phosphorylate specific tyrosine residues (Y446 and Y496) on the intracellular domain of the IL-10R1 chain. Once phosphorylated, these tyrosine residues (and their flanking peptide sequences) serve as temporary docking sites for the latent transcription factor, STAT3 (signal transducer and activator of transcription-3). STAT3 binds to these sites via its SH2 (Src homology 2) domain, and is, in turn, tyrosine-phosphorylated by the receptor-associated JAKs. It then homodimerizes and translocates to the nucleus where it binds with high affinity to STAT-binding elements (SBE) in the promoters of various IL-10-responsive genes. One of these genes, SOCS-3 (Suppressor of Cytokine Signaling-3) is a member of a newly identified family of genes that inhibit JAK/STAT-dependent signaling. Moreover, the ability of IL-10 to induce de novo synthesis of SOCS-3 in monocytes correlates with its ability to inhibit expression of many genes in these cells, including endotoxin-inducible cytokines such as tumor necrosis factor-alpha (TNF-alpha) and IL-1. Thus, the ability of IL-10 to inhibit gene expression in monocytes is associated with its ability to rapidly induce synthesis of SOCS-3.
    Journal of Interferon & Cytokine Research 07/1999; 19(6):563-73. DOI:10.1089/107999099313695 · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The advantages offered by the electronic component LED (light emitting diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data
    Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on; 02/2002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human placentas are sources of cytokines, hormones and other substances that program receptive cells. One of these substances is HLA-G, which influences the functioning of both leukocytes and endothelial cells. In this study, we investigated the possibility that these and/or other types of cells in extraembryonic fetal tissues might respond to HLA-G by interacting with one or another of the leukocyte immunoglobulin-like receptors (LILR). LILRB1 is expressed by most leukocytes and LILRB2 is expressed primarily by monocytes, macrophages and dendritic cells. Analysis of term placentas by immunohistochemistry and Real Time PCR demonstrated that LILRB1 and LILRB2 protein and specific messages are produced in the mesenchyme of term villous placenta but are differently localized. LILRB1 was abundant in stromal cells and LILRB2 was prominent perivascularly. Neither receptor was identified in trophoblast. Further investigation using double label immunofluorescence indicated that placental vascular smooth muscle but not endothelia exhibit LILRB2. Term umbilical cord exhibited the same LILRB2 patterns as term placenta. Samples obtained by laser capture dissection of vascular smooth muscle in umbilical cords demonstrated LILRB2 mRNA, and double label immunofluorescence showed that cord vascular smooth muscle but not endothelium exhibited LILRB2 protein. The presence of LILRB1 in placental stromal cells and LILRB2 in vascular smooth muscle strongly suggest that HLA-G has novel functions in these tissues that could include regulation of placental immunity as well as development and function of the extraembryonic vasculature.
    Placenta 08/2008; 29(7):631-8. DOI:10.1016/j.placenta.2008.04.007 · 3.29 Impact Factor
Show more