NTP workshop: Animal models for the NTP rodent cancer bioassay: Stocks and strains - Should we switch?

National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
Toxicologic Pathology (Impact Factor: 1.92). 02/2006; 34(6):802-5. DOI: 10.1080/01926230600935938
Source: PubMed

ABSTRACT The National Toxicology Program (NTP) hosted a workshop, "Animal Models for the NTP Rodent Cancer Bioassay: Strains and Stocks--Should We Switch?" on June 16-17, 2005, at the National Institute of Environmental Health Sciences (NIEHS) in Research Triangle Park, North Carolina. The workshop's objectives were to determine (1) whether the currently used models, the F344/N rat and B6C3F1/N mouse, continue to be appropriate to identify substances that may pose a carcinogenic hazard for humans and (2) whether the NTP should consider conducting cancer bioassays using multiple strains of rats and/or mice to better capture the range of genetic variability. Workshop participants advised the NTP to discontinue using the current F344/N strain due to the recent issues with fertility, seizure activity, and chylothorax and provided several options on how the program should approach identifying and selecting a new rat model. Participants believed that the B6C3F1/N mouse is still appropriate for use by the NTP, but suggested the NTP take steps to better understand and address increases in background rates of liver tumors in this strain. Finally, the participants supported the NTP exploring the use of the multiple strain approach, although they raised many questions concerning data interpretation and feasibility. This article also outlines the NTP's next steps in pursuing the workshop recommendations.


Available from: Kristina Thayer, Jul 05, 2014
  • Source
    Environmental Health Perspectives 03/2015; 123(3):A64-A67. DOI:10.1289/ehp.123-A64 · 7.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The National Toxicology Program (NTP) has developed a new flexible study design, termed the modified one generation (MOG) reproduction study. The MOG study will encompass measurements of developmental and reproductive toxicity parameters as well as enable the setting of appropriate dose levels for a cancer bioassay through evaluation of target organ toxicity that is based on test article exposure that starts during gestation. This study design is compared and contrasted with the new Organization for Economic Co-operation and Development (OECD) 443 test guideline, the extended one generation reproduction study. The MOG study has a number of advantages, with a focus on F 1 animals, the generation of adequately powered, robust data sets that include both pre and postnatal developmental toxicity information, and the measurement of effects on reproductive structure and function in the same animals. This new study design does not employ the use of internal triggers in the design structure for the use of animals already on test and is also consistent with the principles of the 3R's.
    Toxicologic Pathology 05/2014; DOI:10.1177/0192623314534920 · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inbred strains of mice such as C57BL and BALB/c are more widely used in published work than outbred stocks of mice such as ICR and CD-1. In contrast, outbred stocks of rats such as Wistar and Sprague-Dawley are more widely used than inbred strains such as F344 and LEW. The properties of inbred and outbred mice and rats are briefly reviewed, and it is concluded that, with some exceptions, there is a strong case for using inbred strains in most controlled experiments. This is because they are usually more uniform, so that fewer animals are usually needed to detect a specified response and they are more repeatable, because they are genetically defined (i.e., the strain can be identified using genetic markers) and less liable to genetic change. Yet many scientists continue to use outbred animals. In Daniel Kahneman's book "Thinking Fast and Slow" he explains that we can answer questions in 2 ways: "fast" by intuition or "slow" by analytical reasoning. The former method is instantaneous, requires no thought but is not evidence based. Analytical reasoning is evidence based but requires hard work, which we all avoid. He has found that "… when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution." The target question of whether to choose outbred or inbred strains in controlled experiments is a difficult one requiring knowledge of the characteristics of these strains and the principles of experimental design. A substitute question, "are humans and outbred stocks both genetically heterogeneous," is easily answered in the affirmative. It is likely that many scientists are intuitively answering the substitute question and are assuming that they have answered the target question. If so they may be using the wrong animals in their research. Nor is the fact that humans and outbred stocks are alike in being genetically heterogeneous a reason for using them. The whole concept of a "model" is that it is similar to the target in some respects but different in others. Rats and mice differ from humans in that we can control their genotype. This is a positive attribute that enormously increases their value in research. Funding organizations should support research in comparing the 2 types in real experiments. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email:
    ILAR journal / National Research Council, Institute of Laboratory Animal Resources 12/2014; 55(3):399-404. DOI:10.1093/ilar/ilu036 · 1.05 Impact Factor