Li C, Scott DA, Hatch E, Tian X, Mansour SL.. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134: 167-176

Department of Human Genetics, University of Utah, 15 N 2030 E RM 2100, Salt Lake City, UT 84112-5330, USA.
Development (Impact Factor: 6.46). 02/2007; 134(1):167-76. DOI: 10.1242/dev.02701
Source: PubMed


Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regulate, forming negative feedback loops that attenuate the signals. We show here that in mouse embryos, Fibroblast growth factor receptors (FGFRs) are required for transcription of Dusp6, which encodes MKP3, an extracellular signal-regulated kinase (ERK)-specific MKP. Targeted inactivation of Dusp6 increases levels of phosphorylated ERK, as well as the pERK target, Erm, and transcripts initiated from the Dusp6 promoter itself. Finally, the Dusp6 mutant allele causes variably penetrant, dominant postnatal lethality, skeletal dwarfism, coronal craniosynostosis and hearing loss; phenotypes that are also characteristic of mutations that activate FGFRs inappropriately. Taken together, these results show that DUSP6 serves in vivo as a negative feedback regulator of FGFR signaling and suggest that mutations in DUSP6 or related genes are candidates for causing or modifying unexplained cases of FGFR-like syndromes.

Download full-text


Available from: Suzanne L Mansour, Jan 07, 2014
  • Source
    • "Unlike the neighbouring cortical hem, a secondary organizer of the hippocampal primordium (Mangale et al. 2008), which displays strong expression for both Wnt and Bmp molecules (Grove et al. 1998), the EmT showed strong expression for Wnts but low levels of expression for members of the Bmp family. Fgfs showed restricted expression in the EmT but expression of Mkp3, a downstream negative regulator of Fgf signalling (Li et al. 2007), was more widespread. This compares to the restricted expression of Fgf8 in relation to the widespread expression domain of Mkp3 in the isthmus (Echevarria et al. 2005), a secondary organizer of the midbrain–hindbrain region (Martinez 2001). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain.
    Brain Structure and Function 10/2015; DOI:10.1007/s00429-015-1127-3 · 5.62 Impact Factor
  • Source
    • "The top results for genes enriched following FGF treatment are sets associated with modulation of signaling, such as protein kinases and GTPase regulators, which may function as activators of Ras to promote MEK/ERK signaling. Transcriptional feedback regulation of RTK signaling is well established, particularly the role of DUSPs providing negative feedback for MAPK signaling (Amit et al., 2007; Li et al., 2007; Owens and Keyse, 2007). Indeed, many DUSPs (MAPK phosphatases) are induced in response to both PDGF and FGF treatment at 1 hr (Figure 1—figure supplement 1D), but FGF alone induces the expression of kinases and GTPase regulators at 4 hr, suggesting a distinct role for the FGF response in regulating MEK/ERK activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor tyrosine kinases (RTKs) signal through shared intracellular pathways yet mediate distinct outcomes across many cell types. To investigate the mechanisms underlying RTK specificity in craniofacial development, we performed RNA-seq to delineate the transcriptional response to platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling in mouse embryonic palatal mesenchyme cells. While the early gene expression profile induced by both growth factors is qualitatively similar, the late response is divergent. Comparing the effect of MEK (Mitogen/Extracellular signal-regulated kinase) and PI3K (phosphoinositide-3-kinase) inhibition, we find the FGF response is MEK-dependent while the PDGF response is PI3K-dependent. Further, FGF promotes proliferation but PDGF favors differentiation. Finally, we demonstrate overlapping domains of PDGF-PI3K signaling and osteoblast differentiation in the palate and increased osteogenesis in FGF mutants, indicating this differentiation circuit is conserved in vivo. Our results identify distinct responses to PDGF and FGF and provide insight into the mechanisms encoding RTK specificity.
    eLife Sciences 05/2015; 4. DOI:10.7554/eLife.07186 · 9.32 Impact Factor
  • Source
    • "miRNA326 0.0002 1.58 times Maintenance and survival of striatal precursor pool TGM7 [16] [17] miRNA181c 0.0029 1.50 times Switch for lineage-to-self-renewal and telomerase expression PTPN11, PTPN22, DUSP6, PBX3, IRF8, and ZEB2 [18] [19] [20] [21] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Dopamine (DA) is one of the key neurotransmitters in the striatum, which is functionally important for a variety of cognitive and motor behaviours. It is known that the striatum is vulnerable to damage from traumatic brain injury (TBI). However, a therapeutic approach has not yet been established to treat TBI. Hence, the present work aimed to evaluate the ability of Normobaric hyperoxia treatment (NBOT) to recover dopaminergic neurons following a fluid percussion injury (FPI) as a TBI experimental animal model. To examine this, mice were divided into four groups: (i) Control, (ii) Sham, (iii) FPI and (iv) FPI+NBOT. Mice were anesthetized and surgically prepared for FPI in the striatum and immediate exposure to NBOT at various time points (3, 6, 12 and 24 hr). Dopamine levels were then estimated post injury by utilizing a commercially available ELISA method specific to DA. We found that DA levels were significantly reduced at 3 hr, but there was no reduction at 6, 12 and 24 hr in FPI groups when compared to the control and sham groups. Subjects receiving NBOT showed consistent increased DA levels at each time point when compared with Sham and FPI groups. These results suggest that FPI may alter DA levels at the early post-TBI stages but not in later stages. While DA levels increased in 6, 12 and 24hr in the FPI groups, NBOT could be used to accelerate the prevention of early dopaminergic neuronal damage following FPI injury and improve DA levels consistently.
    International Journal of Neuroscience 09/2014; 125(9):1-22. DOI:10.3109/00207454.2014.961065 · 1.52 Impact Factor
Show more