Article

Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development

Department of Human Genetics, University of Utah, 15 N 2030 E RM 2100, Salt Lake City, UT 84112-5330, USA.
Development (Impact Factor: 6.27). 02/2007; 134(1):167-76. DOI: 10.1242/dev.02701
Source: PubMed

ABSTRACT Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regulate, forming negative feedback loops that attenuate the signals. We show here that in mouse embryos, Fibroblast growth factor receptors (FGFRs) are required for transcription of Dusp6, which encodes MKP3, an extracellular signal-regulated kinase (ERK)-specific MKP. Targeted inactivation of Dusp6 increases levels of phosphorylated ERK, as well as the pERK target, Erm, and transcripts initiated from the Dusp6 promoter itself. Finally, the Dusp6 mutant allele causes variably penetrant, dominant postnatal lethality, skeletal dwarfism, coronal craniosynostosis and hearing loss; phenotypes that are also characteristic of mutations that activate FGFRs inappropriately. Taken together, these results show that DUSP6 serves in vivo as a negative feedback regulator of FGFR signaling and suggest that mutations in DUSP6 or related genes are candidates for causing or modifying unexplained cases of FGFR-like syndromes.

0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somite formation in the early stage of vertebrate embryonic development is controlled by a complicated gene network named segmentation clock, which is defined by the periodic expression of genes related to the Notch, Wnt, and the fibroblast growth factor (FGF) pathways. Although in recent years some findings about crosstalk among the Notch, Wnt, and FGF pathways in somitogenesis have been reported, the investigation of their crosstalk mechanisms from a systematic point of view is still lacking. In this study, a more comprehensive mathematical model was proposed to simulate the dynamics of the Notch, Wnt, and FGF pathways in the segmentation clock. Simulations and bifurcation analyses of this model suggested that the concentration gradients of both Wnt, and FGF signals along the presomitic mesoderm (PSM) are corresponding to the whole process from start to stop of the segmentation clock. A number of highly sensitive parameters to the segmentation clock's oscillatory pattern were identified. By further bifurcation analyses for these sensitive parameters, and several complementary mechanisms in respect of the maintenance of the stable oscillation of the segmentation clock were revealed.
    Computational Intelligence and Neuroscience 01/2015; 2015:387409. DOI:10.1155/2015/387409
  • [Show abstract] [Hide abstract]
    ABSTRACT: A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.
    Nature 12/2014; DOI:10.1038/nature14000 · 42.35 Impact Factor
  • Source

Full-text (2 Sources)

Download
50 Downloads
Available from
May 31, 2014