Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance.

LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Germany.
Nature (Impact Factor: 42.35). 01/2007; 444(7121):941-4. DOI: 10.1038/nature05415
Source: PubMed

ABSTRACT G proteins are an important class of regulatory switches in all living systems. They are activated by guanine nucleotide exchange factors (GEFs), which facilitate the exchange of GDP for GTP. This activity makes GEFs attractive targets for modulating disease-relevant G-protein-controlled signalling networks. GEF inhibitors are therefore of interest as tools for elucidating the function of these proteins and for therapeutic intervention; however, only one small molecule GEF inhibitor, brefeldin A (BFA), is currently available. Here we used an aptamer displacement screen to identify SecinH3, a small molecule antagonist of cytohesins. The cytohesins are a class of BFA-resistant small GEFs for ADP-ribosylation factors (ARFs), which regulate cytoskeletal organization, integrin activation or integrin signalling. The application of SecinH3 in human liver cells showed that insulin-receptor-complex-associated cytohesins are required for insulin signalling. SecinH3-treated mice show increased expression of gluconeogenic genes, reduced expression of glycolytic, fatty acid and ketone body metabolism genes in the liver, reduced liver glycogen stores, and a compensatory increase in plasma insulin. Thus, cytohesin inhibition results in hepatic insulin resistance. Because insulin resistance is among the earliest pathological changes in type 2 diabetes, our results show the potential of chemical biology for dissecting the molecular pathogenesis of this disease.


Available from: Markus Hafner, Mar 27, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The serine/threonine kinase Polo-like kinase 1 (Plk1) is overexpressed in many types of human cancers, and has been implicated as an adverse prognostic marker for cancer patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain (PBD). Here we show that Plk1 can be inhibited by small molecules which interfere with its intracellular localization by inhibiting the function of the PBD. We report the natural product thymoquinone and, especially, the synthetic thymoquinone derivative Poloxin as inhibitors of the Plk1 PBD. Both compounds inhibit the function of the Plk1 PBD in vitro, and cause Plk1 mislocalization, chromosome congression defects, mitotic arrest, and apoptosis in HeLa cells. Our data validate the Plk1 PBD as an anticancer target and provide a rationale for developing thymoquinone derivatives as anticancer drugs.
    Chemistry & Biology 06/2008; 15(5):459-66. DOI:10.1016/j.chembiol.2008.03.013 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-protein-coupled receptors are desensitized by a two-step process. In a first step, G-protein-coupled receptor kinases (GRKs) phosphorylate agonist-activated receptors that subsequently bind to a second class of proteins, the arrestins. GRKs can be classified into three subfamilies, which have been implicated in various diseases. The physiological role(s) of GRKs have been difficult to study as selective inhibitors are not available. We have used SELEX (systematic evolution of ligands by exponential enrichment) to develop RNA aptamers that potently and selectively inhibit GRK2. This process has yielded an aptamer, C13, which bound to GRK2 with a high affinity and inhibited GRK2-catalyzed rhodopsin phosphorylation with an IC50 of 4.1 nM. Phosphorylation of rhodopsin catalyzed by GRK5 was also inhibited, albeit with 20-fold lower potency (IC50 of 79 nM). Furthermore, C13 reveals significant specificity, since almost no inhibitory activity was detectable testing it against a panel of 14 other kinases. The aptamer is two orders of magnitude more potent than the best GRK2 inhibitors described previously and shows high selectivity for the GRK family of protein kinases.
    RNA 04/2008; 14(3):524-34. DOI:10.1261/rna.821908 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress-associated inflammation positively contributed to insulin resistance. Fucosylated chondroitin sulphate from Cusumaria frondosa (Cf-CHS) can mitigate insulin resistance. However, its effects on ER stress and inflammation were not understood. We investigated whether Cf-CHS influenced ER stress, inflammatory response and signaling in insulin resistant mice. The results showed that Cf-CHS lowered serum and hepatic ROS, NO, and FFA levels. Furthermore, Cf-CHS decreased serum proinflammatory cytokines TNF-α, CRP, MIP-1, IL-1β and IL-6 concentrations and their hepatic mRNA expression, and increased anti-inflammatory cytokine IL-10 levels. Meanwhile, Cf-CHS reduced ER stress markers Bip, ATF6, PERK, and XBP1 mRNA or protein expression, and PERK, eIF2α, and IRE1α phosphorylation. These reductions were accompanied by reduced activation of JNK1 and IKKβ, NFκB nuclear translocation, and IR/IRS-2 serine phosphorylation in Cf-CHS-treated mice. These findings suggested that Cf-CHS supplementary-induced alleviation of RE stress-associated inflammation could be a mechanism responsible for its beneficial effects against insulin resistance.
    03/2015; 6(5). DOI:10.1039/C4FO01153H