Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance.

LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Germany.
Nature (Impact Factor: 38.6). 01/2007; 444(7121):941-4. DOI: 10.1038/nature05415
Source: PubMed

ABSTRACT G proteins are an important class of regulatory switches in all living systems. They are activated by guanine nucleotide exchange factors (GEFs), which facilitate the exchange of GDP for GTP. This activity makes GEFs attractive targets for modulating disease-relevant G-protein-controlled signalling networks. GEF inhibitors are therefore of interest as tools for elucidating the function of these proteins and for therapeutic intervention; however, only one small molecule GEF inhibitor, brefeldin A (BFA), is currently available. Here we used an aptamer displacement screen to identify SecinH3, a small molecule antagonist of cytohesins. The cytohesins are a class of BFA-resistant small GEFs for ADP-ribosylation factors (ARFs), which regulate cytoskeletal organization, integrin activation or integrin signalling. The application of SecinH3 in human liver cells showed that insulin-receptor-complex-associated cytohesins are required for insulin signalling. SecinH3-treated mice show increased expression of gluconeogenic genes, reduced expression of glycolytic, fatty acid and ketone body metabolism genes in the liver, reduced liver glycogen stores, and a compensatory increase in plasma insulin. Thus, cytohesin inhibition results in hepatic insulin resistance. Because insulin resistance is among the earliest pathological changes in type 2 diabetes, our results show the potential of chemical biology for dissecting the molecular pathogenesis of this disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin-1 (ET-1) induces lipolysis in adipocytes, where ET-1 chronic exposure results in insulin resistance (IR) through suppression of glucose transporter (GLUT)4 translocation to the plasma membrane and consequently glucose uptake. ARF6 small GTPase, which plays a vital role in cell surface receptors trafficking, has previously been shown to regulate GLUT4 recycling and thereby insulin signalling. ARF6 also plays a role in ET-1 promoted endothelial cell migration. However, ARF6 involvement in ET-1-induced lipolysis in adipocytes is unknown. Therefore, we investigated the role of ARF6 in ET-1-induced lipolysis in 3T3-L1 adipocytes. This was achieved by studying the effect of inhibitors for the activation of ARF6 and other signalling proteins on ET-1 induced lipolysis and ARF6 activation in the adipocytes. Our results indicate that ET-1 induces, through endothelin type A receptor (ETAR), lipolysis, the ARF6 activation and extracellular-signal regulated kinase (ERK) phosphorylation in adipocytes, further ET-1 stimulated lipolysis is inhibited by the inhibitors of ARF6 activation, ERK phosphorylation and dynamin, which is essential for endocytosis. Our studies also revealed that ARF6 acts upstream of ERK in ET-1-indcued lipolysis. In summary, we determined that ET-1 activation of ETAR signalled through ARF6, which is crucial for lipolysis.
    Biochemical pharmacology. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocyte precursor cells differentiate to produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. Many aspects of differentiation are regulated by multiple extracellular signals. However, their intracellular signalings remain elusive. Here, we show that Rab35 and its effector, ACAP2, a GTPase-activating protein that switches off Arf6 activity, negatively regulate oligodendrocyte morphological differentiation. Knockdown of Rab35 or ACAP2 with their respective small interfering RNAs promotes differentiation. As differentiation initiates, the activities of Rab35 and ACAP2 are down-regulated. The activity of Arf6, in contrast, is upregulated. Arf6 knockdown inhibits differentiation, indicating that Rab35 and ACAP2 negatively regulate differentiation by downregulating Arf6. Importantly, as differentiation proceeds, the activity of cytohesin-2, a guanine-nucleotide exchange factor that switches on Arf6 activity, is upregulated. Pharmacological inhibition of cytohesin-2 inhibits differentiation, suggesting that cytohesin-2 promotes differentiation by activating Arf6. Furthermore, using oligodendrocyte-neuronal cocultures, we find that knockdown of Rab35 or ACAP2 promotes myelination, whereas inhibition of cytohesin-2 or knockdown of Arf6 inhibits myelination. Thus, Rab35/ACAP2 and cytohesin-2 antagonistically control oligodendrocyte differentiation and myelination through Arf6 regulation, presenting a unique way by a small GTPase on/off switching mechanism.
    Molecular biology of the cell 03/2014; · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptor α (ERα) is a well-validated drug target for a majority of breast cancers. But the target sites on this receptor are far from exhaustively defined. Almost all ER antagonists in clinical use function by binding to the ligand-binding pocket to occlude agonist access. Resistance to this type of drugs may develop over time, not caused by the change of ERα itself, but by changes in ER associated proteins. This observation is fueling the development of reagents that downregulate ER activity through novel binding sites. However, it is challenging to find general ER antagonists that act independently from other known ER ligands. In this report, we describe the utility of RNA aptamers in the search for new drug target sites on ERα. We have identified three high affinity aptamers and characterized one of them in detail. This aptamer interacted with ERα in a way not affected by the presence or absence of either the steroidal ligands or the estrogen response DNA elements, and effectively inhibited ER-mediated transcriptional activation in a breast cancer cell line. Serving as a novel drug lead, it may also be used to guide the rational chemical synthesis of small molecule drugs or to perform screens of small molecule libraries for those that are able to displace the aptamer from its binding site.
    Nucleic acid therapeutics. 03/2014;

Full-text (2 Sources)

Available from
May 30, 2014

Similar Publications